We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Catalytic Pd–Ag nanoparticles immobilized on fiber glass by surface self-propagating thermal synthesis | SpringerLink

Catalytic Pd–Ag nanoparticles immobilized on fiber glass by surface self-propagating thermal synthesis

Abstract

Pd–Ag nanoparticles with different Pd/Ag ratio were deposited onto fiber glass by using the technique of surface self-propagating thermal synthesis (SSTS) and characterized by X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (ААS), and EXAFS spectroscopy. The samples reduced in hydrogen exhibited the formation of Pd–Ag alloy whose tentative structure and composition were suggested. Thermally scheduled reduction of Pd–Ag catalysts in hydrogen made the Ag atoms partially oxidized. Reported are the catalytic properties of synthesized Pd–Ag samples in selective hydrogenation of acetylene.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sinfelt, J.H., Bimetallic Catalysts: Discoveries, Concepts and Applications, New York: Wiley, 1983, pp. 9–20.

    Google Scholar 

  2. 2.

    Zamaraev, K.I., Perspectives in catalysis: Via studies on molecular level to new industrial catalysts and processes, Usp. Khim., 1993, vol. 62, no. 11, pp. 1051–1063.

    Article  Google Scholar 

  3. 3.

    Heemeier, M., Carlsson, A.F., Naschitzki, M., Schmal, M., Blumer, M., and Freund, H.-J., Preparation and characterization of a model bimetallic catalyst: Co–Pd nanoparticles supported on Al2O3, Angew. Chem. Int. Ed., 2002, vol. 41, no. 21, pp. 4073–4076.

    Article  Google Scholar 

  4. 4.

    Hub, S., Hilaire, L., and Touroude, R., Hydrogenation of but-1-yne and but-1-ene on palladium catalysts: Particle size effect,Appl. Catal., 1988, vol. 36, pp. 307–322. http://booksc.org/g/Serge%20Hub.

    Article  Google Scholar 

  5. 5.

    Coq, B. and Figueras, F., Bimetallic palladium catalysts: Influence of the co-metal on the catalyst performance, J. Mol. Catal. A: Chem., 2001. vol. 173, no. 2, pp. 117–134. doi 10.1016/S1381-1169(01)00148-0

    Article  Google Scholar 

  6. 6.

    Tkachenko, O.P., Stakheev, A.Yu., Kustov, L.M., Mashkovsky, I.L., van den Berg, L., Kozitsyna, N.Yu., Dobrokhotova, Zh.V., Zhilov, V.I., Nefedov, S.E., Vargaftik, M.N., and Moiseev, I.I., An easy way to Pd–Zn nano alloy with defined composition from a heterobimetallic Pd(µ-OOCMe)4Zn(OH2) complex as evidenced by XAFS and XRD, Catal. Lett., 2006, vol. 112, nos. 3–4, pp. 155–161. doi 10.1007/s10562-006-0196-6

    Article  Google Scholar 

  7. 7.

    Ershov, B.G., Ananev, A.V., Abchalimov, E.B., Kochubey, D.I., Krivenzov, V.V., Plysova, L.M., Molina, I.Yu., Kozitsyna, N.Yu., Nefedov, S.E., Vargaftik, M.N., and Moiseev, I.I., Bimetallic Pd–M (M = Co, Ni, Zn, Ag) nanoparticles containing transition metals: Synthesis, characterization and catalytic performance, Nanotechnol. Russ., 2011, vol. 6, nos. 5–6, pp. 323–329. doi 10.1134/S1995078011030050

    Article  Google Scholar 

  8. 8.

    Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 1, pp. 23–35. doi 10.3103/S1061386207010049

    Article  Google Scholar 

  9. 9.

    Bal’zhinimaev, B.S., Barelko, V.V., Suknev, A.P., Paukshtis, E.A., Simonova, L.G., Goncharov, V.B., Kirillov, V.L., and Toktarev, A.V., Catalysts based on fiberglass supports: V. Absorption and catalytic properties of palladium catalysts based on a leached silicafiber glass support in the selective hydrogenation of ethylene–acetylene mixture, Kinet. Catal., 2002, vol. 43, no. 4, pp. 542–549. doi 10.1023/A:1019835303914

    Article  Google Scholar 

  10. 10.

    Mironenko, O.O., Shitova, N.B., Kotolevich, Y.S., Sharafutdinov, M.R., Struikhina, N.O., Smirnova, N.S., Kochubei, D.I., Protasova, O.V., Trenikhin, M.V., Stonkus, O.A., Zaikovskii, V.I., Goncharov, V.B., and Tsyrul’nikov, P.G., Investigation of Pd/fiber glass and Pd/5%γ–Al2O3/fiber glass catalysts prepared by surface self-propagating thermal synthesis, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 2, pp. 139–145. doi 10.3103/S1061386212020082

    Article  Google Scholar 

  11. 11.

    Moulder, J.F., Stickle, W.W., Sobol, P.E., and Bomber, K.D. in Handbook of X-ray Photoelectron Spectroscopy, Chastain, J., Ed., Eden Prairie, MN: Perkin Elmer, 1992, pp. 139–145. http://booksee.org/book/1407838.

    Google Scholar 

  12. 12.

    Brun, M., Berthet, A., and Bertolini, J.C., XPS, AES and Auger parameters of Pd and PdO, J. Electr. Spectrosc. Relat. Phenom., 1999, vol. 104, no. 1, pp. 55–60. http://elibrary.ru/download/elibrary_163271_39990975.pdf.

    Article  Google Scholar 

  13. 13.

    Practical Surface Analysis by Auger and X-Ray Potoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., New York: Wiley, 1983, pp. 311–356.

  14. 14.

    Suhonen, S., Valden, M., Pessa, M., Savimaki, A., Harkonen, M., Hietikko, M., Pursiainen, J., and Laitinen, R., Palladium-supported catalysts in methane combustion: Comparison of alumina and zirconia supports, Appl. Catal., 2001, vol. 207, nos. 1–6, pp. 113–120. http://dx..org/ doi 10.1016/S0926-860X(00)00621-9.10.1016/S0926-860X(00)00621-9

    Article  Google Scholar 

  15. 15.

    Steiner, P. and Hüfner, S., Core-level binding energy shifts in dilute alloys, Solid State Commun., 1981, vol. 37, pp. 73–78.

    Article  Google Scholar 

  16. 16.

    Steiner, P., Hüfner, S., Mårtensson, N., and Johansson, B., Thermochemical analysis of PdxAg1–x alloys from XPS core-level binding energy shifts, Solid State Commun., 1981, no. 37, pp. 79–81.

    Article  Google Scholar 

  17. 17.

    Praserthdam, P., Ngamsom, B., Bogdanchikova, N., Phatanasri, S., and Pramotthana, M., Effect of the pretreatment with oxygen and/or oxygen-containing compounds on the catalytic performance of Pd–Ag/Al2O3 for acetylene hydrogenation, Appl. Catal. A: General, 2002, vol. 230, no. 1, pp. 41–51. http://booksc.org/ book/4797498, PII: S0926-860X(01)00993-0.

    Article  Google Scholar 

  18. 18.

    Karski, S., Witonska, I., Rogowski, J., and Goluchowska, J., Interaction between Pd and Ag on the surface of silica, J. Mol. Catal. A: Chem., 2005, vol. 240, nos. 1–2, pp. 155–163. http://dx..org/ doi 10.1016/ j.molcata.2005.06.053.10.1016/j.molcata.2005.06.053

    Google Scholar 

  19. 19.

    Chou, C.W., Chu, S.J., Chiang, H.J., Huang, C.Y., Lee, C.J., Sheen, S.R., Peng, T.P., and Yeh, C.T., Temperature-programmed reduction study on calcination of nano-palladium, J. Phys. Chem. B., 2001, vol. 105, no. 38, pp. 9113–9117. http://pubs.acs.org/ /abs/10.1021/jp011170g.

    Article  Google Scholar 

  20. 20.

    Mamontov, G.V., Magaev, O.V., Knyazev, A.S., and Vodyankina, O.V., Influence of the phosphate addition on the activity of Ag and Cu catalysts for partial oxidation of alcohols, Catal. Today, 2013, vol. 203, pp. 122–126. http://dx.org/ doi 10.1016/j.cattod.2012.02.048. 10.1016/j.cattod.2012.02.048

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. B. Goncharov.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotolevich, Y.S., Mamontov, G.V., Vodyankina, O.V. et al. Catalytic Pd–Ag nanoparticles immobilized on fiber glass by surface self-propagating thermal synthesis. Int. J Self-Propag. High-Temp. Synth. 26, 234–239 (2017). https://doi.org/10.3103/S1061386217040045

Download citation

Keywords

  • surface self-propagating thermal synthesis (SSTS)
  • heterogeneous catalysis
  • fiber glass
  • immobilized Pd–Ag catalysts
  • selective hydrogenation of acetylene