Sinfelt, J.H., Bimetallic Catalysts: Discoveries, Concepts and Applications, New York: Wiley, 1983, pp. 9–20.
Google Scholar
Zamaraev, K.I., Perspectives in catalysis: Via studies on molecular level to new industrial catalysts and processes, Usp. Khim., 1993, vol. 62, no. 11, pp. 1051–1063.
Article
Google Scholar
Heemeier, M., Carlsson, A.F., Naschitzki, M., Schmal, M., Blumer, M., and Freund, H.-J., Preparation and characterization of a model bimetallic catalyst: Co–Pd nanoparticles supported on Al2O3, Angew. Chem. Int. Ed., 2002, vol. 41, no. 21, pp. 4073–4076.
Article
Google Scholar
Hub, S., Hilaire, L., and Touroude, R., Hydrogenation of but-1-yne and but-1-ene on palladium catalysts: Particle size effect,Appl. Catal., 1988, vol. 36, pp. 307–322. http://booksc.org/g/Serge%20Hub.
Article
Google Scholar
Coq, B. and Figueras, F., Bimetallic palladium catalysts: Influence of the co-metal on the catalyst performance, J. Mol. Catal. A: Chem., 2001. vol. 173, no. 2, pp. 117–134. doi 10.1016/S1381-1169(01)00148-0
Article
Google Scholar
Tkachenko, O.P., Stakheev, A.Yu., Kustov, L.M., Mashkovsky, I.L., van den Berg, L., Kozitsyna, N.Yu., Dobrokhotova, Zh.V., Zhilov, V.I., Nefedov, S.E., Vargaftik, M.N., and Moiseev, I.I., An easy way to Pd–Zn nano alloy with defined composition from a heterobimetallic Pd(µ-OOCMe)4Zn(OH2) complex as evidenced by XAFS and XRD, Catal. Lett., 2006, vol. 112, nos. 3–4, pp. 155–161. doi 10.1007/s10562-006-0196-6
Article
Google Scholar
Ershov, B.G., Ananev, A.V., Abchalimov, E.B., Kochubey, D.I., Krivenzov, V.V., Plysova, L.M., Molina, I.Yu., Kozitsyna, N.Yu., Nefedov, S.E., Vargaftik, M.N., and Moiseev, I.I., Bimetallic Pd–M (M = Co, Ni, Zn, Ag) nanoparticles containing transition metals: Synthesis, characterization and catalytic performance, Nanotechnol. Russ., 2011, vol. 6, nos. 5–6, pp. 323–329. doi 10.1134/S1995078011030050
Article
Google Scholar
Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 1, pp. 23–35. doi 10.3103/S1061386207010049
Article
Google Scholar
Bal’zhinimaev, B.S., Barelko, V.V., Suknev, A.P., Paukshtis, E.A., Simonova, L.G., Goncharov, V.B., Kirillov, V.L., and Toktarev, A.V., Catalysts based on fiberglass supports: V. Absorption and catalytic properties of palladium catalysts based on a leached silicafiber glass support in the selective hydrogenation of ethylene–acetylene mixture, Kinet. Catal., 2002, vol. 43, no. 4, pp. 542–549. doi 10.1023/A:1019835303914
Article
Google Scholar
Mironenko, O.O., Shitova, N.B., Kotolevich, Y.S., Sharafutdinov, M.R., Struikhina, N.O., Smirnova, N.S., Kochubei, D.I., Protasova, O.V., Trenikhin, M.V., Stonkus, O.A., Zaikovskii, V.I., Goncharov, V.B., and Tsyrul’nikov, P.G., Investigation of Pd/fiber glass and Pd/5%γ–Al2O3/fiber glass catalysts prepared by surface self-propagating thermal synthesis, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 2, pp. 139–145. doi 10.3103/S1061386212020082
Article
Google Scholar
Moulder, J.F., Stickle, W.W., Sobol, P.E., and Bomber, K.D. in Handbook of X-ray Photoelectron Spectroscopy, Chastain, J., Ed., Eden Prairie, MN: Perkin Elmer, 1992, pp. 139–145. http://booksee.org/book/1407838.
Google Scholar
Brun, M., Berthet, A., and Bertolini, J.C., XPS, AES and Auger parameters of Pd and PdO, J. Electr. Spectrosc. Relat. Phenom., 1999, vol. 104, no. 1, pp. 55–60. http://elibrary.ru/download/elibrary_163271_39990975.pdf.
Article
Google Scholar
Practical Surface Analysis by Auger and X-Ray Potoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., New York: Wiley, 1983, pp. 311–356.
Suhonen, S., Valden, M., Pessa, M., Savimaki, A., Harkonen, M., Hietikko, M., Pursiainen, J., and Laitinen, R., Palladium-supported catalysts in methane combustion: Comparison of alumina and zirconia supports, Appl. Catal., 2001, vol. 207, nos. 1–6, pp. 113–120. http://dx..org/ doi 10.1016/S0926-860X(00)00621-9.10.1016/S0926-860X(00)00621-9
Article
Google Scholar
Steiner, P. and Hüfner, S., Core-level binding energy shifts in dilute alloys, Solid State Commun., 1981, vol. 37, pp. 73–78.
Article
Google Scholar
Steiner, P., Hüfner, S., Mårtensson, N., and Johansson, B., Thermochemical analysis of PdxAg1–x alloys from XPS core-level binding energy shifts, Solid State Commun., 1981, no. 37, pp. 79–81.
Article
Google Scholar
Praserthdam, P., Ngamsom, B., Bogdanchikova, N., Phatanasri, S., and Pramotthana, M., Effect of the pretreatment with oxygen and/or oxygen-containing compounds on the catalytic performance of Pd–Ag/Al2O3 for acetylene hydrogenation, Appl. Catal. A: General, 2002, vol. 230, no. 1, pp. 41–51. http://booksc.org/ book/4797498, PII: S0926-860X(01)00993-0.
Article
Google Scholar
Karski, S., Witonska, I., Rogowski, J., and Goluchowska, J., Interaction between Pd and Ag on the surface of silica, J. Mol. Catal. A: Chem., 2005, vol. 240, nos. 1–2, pp. 155–163. http://dx..org/ doi 10.1016/ j.molcata.2005.06.053.10.1016/j.molcata.2005.06.053
Google Scholar
Chou, C.W., Chu, S.J., Chiang, H.J., Huang, C.Y., Lee, C.J., Sheen, S.R., Peng, T.P., and Yeh, C.T., Temperature-programmed reduction study on calcination of nano-palladium, J. Phys. Chem. B., 2001, vol. 105, no. 38, pp. 9113–9117. http://pubs.acs.org/ /abs/10.1021/jp011170g.
Article
Google Scholar
Mamontov, G.V., Magaev, O.V., Knyazev, A.S., and Vodyankina, O.V., Influence of the phosphate addition on the activity of Ag and Cu catalysts for partial oxidation of alcohols, Catal. Today, 2013, vol. 203, pp. 122–126. http://dx.org/ doi 10.1016/j.cattod.2012.02.048. 10.1016/j.cattod.2012.02.048
Article
Google Scholar