Skip to main content
Log in

Abstract

This brief review discusses principles and some latest developments in electrically activated combustion synthesis. Processes discussed include field-activated combustion synthesis (FACS), field-activated pressure-assisted synthesis (FAPAS), reactive spark plasma sintering (R-SPS), electrothermal explosion (ETE), and electrostatic-field-activated combustion synthesis (EFACS). These processes have demonstrated clear benefits to the process of combustion synthesis through the application of electric field. Although a significant amount of works have been published in the area, there still remain some directions within the field where sustained research may provide even more scientific reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merzhanov, A.G. and Borovinskaya, I.P., Historical retrospective of SHS: An Autoreview, Int. J. Self- Propag. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 242–265. doi 10.3103/S1061386208040079

    Article  Google Scholar 

  2. Merzhanov, A.G. and Borovinskaya, I.P., A new class of combustion processes, Combust. Sci. Technol., 1975, vol. 10, no. 2, pp.195–201.

    Google Scholar 

  3. McCauley, J.W. and Puszynski, J.A., Historical perspective and contribution of US researchers into the field of self-propagating high-temperature synthesis (SHS)/combustion synthesis (CS): Personal reflections, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 1, pp. 58–75. doi 10.3103/S106138620801007X

    Article  Google Scholar 

  4. Stolin, A.M. and Bazhin, P.M., SHS extrusion: An overview, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 2, pp. 65–73. doi 10.3103/S1061386214020113

    Article  Google Scholar 

  5. Gauthier, V., Josse, C., Bernard, F., Gaffet, E., and Larpin, J.P., Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process, Mater. Sci. Eng. A, 1999, vol. 265, no. 1, pp.117–128.

    Google Scholar 

  6. Naplocha, K. and Granat, K., Combustion synthesis of Al–Cr preforms activated in microwave field, J. Alloys Compd., 2009, vol. 480, pp. 369–375.

    Article  Google Scholar 

  7. Morsi, K. and Rodriquez, J., Combustion forging of FeAl (40 at % Al), J. Mater. Sci., 2004, vol. 39, pp. 4849–4854.

    Article  Google Scholar 

  8. Morsi, K., The diversity of combustion synthesis processing: A review, J. Mater. Sci., 2012, vol. 47, no. 1, pp. 68–92.

    Article  Google Scholar 

  9. Maglia, F., Anselmi-Tamburini, U., Milanese, C., Bertolino, N., and Munir, Z.A., Field activated combustion synthesis of the silicides of vanadium, J. Alloys Comp., 2001, vol. 319, no. 2, pp. 108–118.

    Article  Google Scholar 

  10. Orrù, R., Cao, G., and Munir, Z.A., Mechanistic investigation of the field-activated combustion synthesis (FACS) of titanium aluminides, Chem. Eng. Sci., 1999, vol. 54, pp. 3349–3355.

    Article  Google Scholar 

  11. Maglia, F., Anselmi-Tamburini, U., Bertolino, N., Milanese, C., and Munir, Z.A., Synthesis of Cr–Si intermetallic compounds by field activated combustion synthesis., J. Mater. Res., 2000, vol. 15, pp. 1098–1109.

    Article  Google Scholar 

  12. Graeve, O.A. and Munir, Z.A., The effect of an electric field on the microstructural development during combustion synthesis of TiNi–TiC composites., J. Alloys Comp., 2002, vol. 340, no. 1, pp. 79–87.

    Article  Google Scholar 

  13. Munir, Z.A., Lai, W., and Ewald, K.H., Field-assisted combustion synthesis, US Patent 5 380 409, 1995.

    Google Scholar 

  14. Feng, A. and Munir, Z.A., Effect of an electric field on self-sustaining combustion synthesis, II: Field-assisted synthesis of β-SiC, Metall. Mater. Trans. B, 1995, vol. 26, no. 3, pp. 587–593.

    Article  Google Scholar 

  15. Munir, Z.A., Shon, I.J., and Yamazaki, K., Simultaneous synthesis and densification by field-activated combustion, US Patent 5 794 113, 1998.

    Google Scholar 

  16. Shon, I.J., Rho, D.H., Kim, H.C., and Munir, Z.A., Dense WSi2 and WSi2–20 vol % ZrO2 composite synthesized by pressure-assisted field-activated combustion, J. Alloys Comp., 2001, vol. 322, nos. 1–2, pp.120–126.

    Article  Google Scholar 

  17. Aiguo, F., Orling, T., and Munir, Z.A, Field-activated pressure-assisted combustion synthesis of polycrystalline Ti3SiC2, J. Mater. Res., 1999, vol. 14, no. 3, pp. 925–939.

    Article  Google Scholar 

  18. Shon, I.J. and Munir, Z.A., Synthesis of MoSi2 xNb and MoSi2 yZrO2 composites by the field-activated combustion method, Mater. Sci. Eng. A, 1995, vol. 202, nos. 1–2, pp. 256–261.

    Article  Google Scholar 

  19. Orrù, R., Cincotti, A., Cao, G., and Munir, Z.A., Mechanistic investigation of electric field-activated self-propagating reactions: Experimental and modeling studies, Chem. Eng. Sci., 2001, vol. 56, no. 2, pp. 683–692.

    Article  Google Scholar 

  20. Jokisaari, J.R., Bhaduri, S., Bhaduri, S.B., Microwave activated combustion synthesis of bulk cobalt silicides, J. Alloys Comp., 2005, vol. 394, no. 2, pp. 160–167.

    Article  Google Scholar 

  21. Feng, A. and Munir, Z.A., Effect of product conductivity on field-activated combustion synthesis, J. Am. Ceram. Soc., 1997, vol. 30, pp. 1222–1230.

    Google Scholar 

  22. Munir, Z.A., The use of an electric field as a processing parameter in the combustion synthesis of ceramics and composites, Metall. Mater. Trans. A, 1996, vol. 27, pp. 2080–2085.

    Article  Google Scholar 

  23. Xue, H. and Munir, Z.A., The synthesis of composites and solid solutions of α-SiC–AlN by field-activated combustion, Scr. Mater., 1996, vol. 35, pp. 979–982.

    Article  Google Scholar 

  24. Xue, H. and Munir, Z.A., Synthesis of AlN–SiC composites and solid solutions by field-activated self-propagating combustion, J. Eur. Ceram. Soc., 1997, vol. 17, pp.1787–1792.

    Article  Google Scholar 

  25. Xue, H. and Munir, Z.A., Extending the compositional limit of combustion-synthesied B4C–TiB2 composites by field activation, Metall. Mater. Trans. B, 1996, vol. 278, pp. 475–480.

    Article  Google Scholar 

  26. Feng, A., Graeve, O.A., and Munir, Z.A., Modeling solution for electric field-activated combustion synthesis, Comput. Mater. Sci., 1998, vol. 12, no. 2, pp. 137–155.

    Article  Google Scholar 

  27. Cao, G., Munir, Z., and Orrù, R., Field-activated combustion synthesis of titanium aluminides, Metall. Mater. Trans. A, 1999, vol. 30, pp. 1101–1108.

    Article  Google Scholar 

  28. Hu, Q., Luo, P., and Yan, Y., Influence of an electric field on combustion synthesis process and microstructures of TiC–Al2O3–Al composites. J. Alloys Comp., 2007, vol. 439, no. 2, pp. 132–136.

    Article  Google Scholar 

  29. Knyazik, V.A., Merzhanov, A.G., Solomonov, V.B., and Shteinberg, A.S., Macrokinetics of high-temperature titanium interaction with carbon under electrothermal explosion conditions, Combust. Explos. Shock Waves, 1985, vol. 21, no. 3, pp. 333–337. doi 10.1007/BF01463853

    Article  Google Scholar 

  30. Knyazik, V.A., Shteinberg, A.S., and Gorovenko, V.B., Thermal analysis of high-speed high-temperature reactions of refractory carbide synthesis, J. Therm. Anal., 1993, vol. 40, pp. 363–371.

    Article  Google Scholar 

  31. Shon, I. and Munir, Z.A., Synthesis of TiC, TiC–Cu composites, and TiC–Cu functionally graded materials by electrothermal combustion, J. Am. Ceram. Soc., 1998, vol. 48, pp. 3243–3248.

    Article  Google Scholar 

  32. Rui, Z., Keqin, F., Junhu, M., Guangming, Z, and Haibo, W., Combustion synthesis of Fe–Cu–TiC composites under electric field, Rare Met. Mater. Eng., 2015, vol. 44, pp. 1633–1638.

    Article  Google Scholar 

  33. Wei, S., Feng, K., Chen, H., Xiong, J., Fan, H., Zhang, G., et al., Combustion synthesis of TiC/Fe–Cu composites under an electric field, J. Alloys Comp., 2012, vol. 541, no. 2, pp. 186–191.

    Article  Google Scholar 

  34. Feng, K., Xiong, J., Sun, L., Fan, H., and Zhou, X., The process of combustion synthesis of WC–Co composites under the action of an electric field. J. Alloys Comp., 2010, vol. 504, no. 3, pp. 277–283.

    Article  Google Scholar 

  35. Feng, K., Hong, M., Yang, Y., and Wang, W., Combustion synthesis of VC/Fe composites under the action of an electric field, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 852–857.

    Article  Google Scholar 

  36. Yang, Y., Feng, K., Shen, K., He, H., and Lin, H., Low temperature combustion synthesis for preparation of TiC reinforced Fe based composites under electric field, Powder Metall., 2006, vol. 49, no. 2, pp.135–139.

    Article  Google Scholar 

  37. Numula, A., Kassegne, S., Moon, K.S., El-Desouky, A., and Morsi, K., Reactive current-activated tip-based sintering of Ni–Al intermetallics, Metallogr. Microstruct. Anal., 2013, vol. 2, no. 2, pp. 148–155.

    Article  Google Scholar 

  38. Morsi, K. and Mehra, P., Effect of mechanical and electrical activation on the combustion synthesis of Al3Ti, J. Mater. Sci., 2014, vol. 49, pp. 5271–5278.

    Article  Google Scholar 

  39. Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Rathel, J., and Haerrmann, M., Fieldassisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments, Adv. Eng. Mater., 2014, vol. 16, pp. 830–849.

    Article  Google Scholar 

  40. Park, C.-D., Kim, H.-C., Shon, I.-J., and Munir, Z.A., One-step synthesis of dense tungsten carbide-cobalt hard materials, J. Am. Ceram. Soc., 2002, vol. 85, pp. 2670–2677.

    Google Scholar 

  41. Jiang, G., Zhuang, H., and Li, W., Combustion synthesis of tungsten carbides under electric field, II: Field-activated pressure-assisted combustion synthesis, Ceram. Int., 2004, vol. 30, pp. 191–197.

    Article  Google Scholar 

  42. Locci, A.M., Orrù, R., Cao, G., and Munir, Z.A., Field-activated pressure-assisted synthesis of NiTi, Intermetallics, 2003, vol. 11, pp. 555–571.

    Article  Google Scholar 

  43. Yuan, Y., Cheng, X., Chang, R., Li, T., Zang, J., Wang, Y., et al., Reactive sintering cBN-Ti-Al composites by spark plasma sintering, Diamond Relat. Mater., 2016, vol. 69, no. 2, pp. 138–143.

    Article  Google Scholar 

  44. Liu, W., Miao, Y., Meng, Q., and Chen, S., Structural characterization of almgb14 prepared by field-activated, pressure-assisted synthesis, J. Mater. Sci. Technol., 2013, vol. 29, no. 1, pp. 77–81.

    Article  Google Scholar 

  45. Orrù, R. and Cao, G., Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramic (UHTC) materials, Materials (Basel), 2013, vol. 6, pp. 1566–1583.

    Article  Google Scholar 

  46. Paris, S., Gaffet, E., and Bernard, F., Control of feal composition produced by SPS reactive sintering from mechanically activated powder mixture, J. Nanomater., 2013, vol. 2013, no. 1, pp. 1–11.

    Article  Google Scholar 

  47. Morsi, K., Esawi, A.M.K., Borah, P., Lanka, S., and Sayed, A., Characterization and spark plasma sintering of mechanically milled aluminum–carbon nanotube (CNT) composite powders, J. Compos. Mater., 2010, vol. 44, no. 16, pp. 1991–2003.

    Article  Google Scholar 

  48. El-Desouky, A., Moon, K., Kassegne, S., and Morsi, K., Green compact temperature evolution during currentactivated tip-based sintering (CATS) of nickel, Metals (Basel), 2013, vol. 3, pp. 178–87.

    Article  Google Scholar 

  49. German, R.M., Powder Metallurgy and Particulate Materials Processing, MPIF, 2005.

    Google Scholar 

  50. El-Desouky, A., Moon, K., Kassegne, S., and Morsi, K., green compact temperature evolution during currentactivated tip-based sintering (CATS) of nickel, Metals (Basel), 2013, vol. 3, pp. 178–187.

    Article  Google Scholar 

  51. Morsi, K., Krommenhoek, M., and Shamma, M., Novel aluminum (Al)-carbon nanotube (CNT) opencell foams, Metall. Mater. Trans. A, 2016, vol. 47, no. 6, pp. 2574–2578.

    Article  Google Scholar 

  52. Dudina, D.V. and Mukherjee, A.K., Reactive spark plasma sintering: Successes and challenges of nanomaterial synthesis, J. Nanomater., 2013, vol. 2013, no. 1, pp. 1–12.

    Article  Google Scholar 

  53. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, pp. 763–777.

    Article  Google Scholar 

  54. Frei, J.M., Anselmi-Tamburini, U., and Munir, Z.A., Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method. J. Appl. Phys., 2007, vol. 101, no. 1, pp. 1–8.

    Google Scholar 

  55. Trzaska, Z. and Monchoux, J.P., Electromigration experiments by spark plasma sintering in the silver–zinc system, J. Alloys Comp., 2015, vol. 635, no. 2, pp. 142–149.

    Article  Google Scholar 

  56. Sun, Y., Kulkarni, K., Sachdev, A.K., and Lavernia, E.J., Synthesis of γ-TiAl by reactive spark plasma sintering of cryomilled ti and al powder blend, II: Effects of electric field and microstructure on sintering kinetics, Metall. Mater. Trans. A, 2014, vol. 45, pp. 2759–2767.

    Article  Google Scholar 

  57. Sun, Y., Haley, J., Kulkarni, K., Aindow, M., and Lavernia, E.J., Influence of electric current on microstructure evolution in Ti/Al and Ti/TiAl3 during spark plasma sintering, J. Alloys Comp., 2015, vol. 648, pp. 1097–1103.

    Article  Google Scholar 

  58. Patel, M., Moon, K.S., Kassegne, S.K., and Morsi, K., Effects of current intensity and cumulative exposure time on the localized current-activated sintering of titanium nickelides, J. Mater. Sci., 2011, vol. 46, pp. 6690–6699.

    Article  Google Scholar 

  59. Busurin, S.M., Morozov, Y.G., Kuznetsov, M.V., Bakhtamov, S.G., and Chernega, M.L., Effect of an electrostatic field on self-propagating high-temperature synthesis of manganese ferrite, Combust. Explos. Shock Waves, 2005, vol. 41, no. 4, pp.421–425. doi 10.1007/s10573-005-0051-x

    Article  Google Scholar 

  60. Kuznetsov, M.V., Morozov, Y.G., Busurin, S.M., Chernega, M.L., and Parkin, I.P., Phase composition and magnetism of combustion products in Ba–Fe–O compounds synthesized under applied DC electric field, J. Magn. Magn. Mater., 2007, vol. 309, no. 2, pp. 202–206.

    Article  Google Scholar 

  61. Busurin, S.M., Kuznetsov, M.V., Morozov, Y.G., Busurina, M.L., and Parkin, I.P., The influence of a dc electric field on chemical interactions in “peroxide–metal” systems during combustion processes, New J. Chem., 2010, vol. 34, pp. 391–398.

    Article  Google Scholar 

  62. Ji, G., Goran, D., Bernard, F., Grosdidier, T., Gaffet, E., and Munir, Z.A., Structure and composition heterogeneity of a FeAl alloy prepared by one-step synthesis and consolidation processing and their influence on grain size characterization, J. Alloys Comp., 2006, vol. 420, no. 2, pp. 158–164.

    Article  Google Scholar 

  63. Riley, D.P., Kisi, E.H., and Phelan, D., SHS of Ti3SiC2: Ignition temperature depression by mechanical activation, 2006, J. Eur. Ceram. Soc., 2006, vol. 26, no. 6, pp. 1051–1058.

    Article  Google Scholar 

  64. Gauthier, V., Bernard, F., Gaffet, E., Vrel, D., Gailhanou, M., and Larpin, J.P., Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction, Intermetallics, 2002, vol. 10, no. 4, pp. 377–389.

    Article  Google Scholar 

  65. Ramezanalizadeh, H. and Heshmati-Manesh, S., Preparation of MoSi2–Al2O3 nano-composite via MASHS route, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 210–217.

    Article  Google Scholar 

  66. Atias Adrian, I.C., Ortigoza Villalba, G.A., Deorsola, F.A., and Abd DeBenedetti, B., Synthesis of Mg2Ni nanostructured by MASHS technique, J. Alloys Comp., 2008, vol. 466, nos. 1–2, pp. 205–207.

    Article  Google Scholar 

  67. Bae, S.K., Shon, I.J., Doh, J.M., Yoon, J.K., and Ko, I.Y., Properties and consolidation of nanocrystalline NbSi2–SiC–Si3N4 composite by pulsed current activated combustion, Scr. Mater., 2008, vol. 58, no. 6, pp. 425–428.

    Article  Google Scholar 

  68. Morsi, K., Shinde, S., and Olevsky, E.A., Self-propagating high-temperature synthesis (SHS) of rotator mixed and mechanically alloyed Ni/Al powder compacts, J. Mater. Sci., 2006, vol. 41, pp. 5699–5703.

    Article  Google Scholar 

  69. Bernard, F., Le Gallet, S., Spinassou, N., Paris, S., Gaffet, E., and Woolman, J.N., Dense nanostructured materials obtained by spark plasma sintering and field activated pressure assisted synthesis starting from mechanically activated powder mixtures, Sci. Sinter., 2004, vol. 36, no. 2, pp. 155–164.

    Article  Google Scholar 

  70. Chen, Y.Y., Yu, H.B., Zhang, D.L., and Chai, L.H., Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy, Mater. Sci. Eng. A, 2009, vol. 525, no. 2, pp. 166–173.

    Article  Google Scholar 

  71. Mei, B. and Miyamoto, Y., Preparation of Ti–Al intermetallic compounds by spark plasma sintering, Metall. Mater. Trans. A, 2001, vol. 32, pp. 843–847.

    Article  Google Scholar 

  72. Kodera, Y., Yamasaki, N., Yamamoto, T., Kawasaki, T., Ohyanagi, M., and Munir, Z.A., Hydrogen storage Mg2Ni alloy produced by induction field activated combustion synthesis, J. Alloys Comp., 2007, vols. 446–447, pp. 138–141.

    Article  Google Scholar 

  73. Shibuya, M., Yoneda, T., Yamamoto, Y., Ohyanagi, M., and Munir, Z., Effect of Ni and Co additives on phase decomposition in TiB2–WB2 solid solutions formed by induction field activated combustion synthesis, J. Am. Ceram. Soc., 2003, vol. 86, pp. 354–356.

    Article  Google Scholar 

  74. Belyakov, A.V., Kalugin, R.N., Panteleenko, F.I., Khina, B.B., and Sarantsev, V.V., Wear resistance of coatings deposited by using SHS technology under electric-spark alloying conditions, Powder Technol. Eng., 2014, vol. 48, no. 2, pp. 147–152.

    Article  Google Scholar 

  75. Yoruk, G. and Ozdemir, O., The evaluation of NiAland TiAl-based intermetallic coatings produced on the AISI 1010 steel by an electric current activated sintering method, Intermetallics, 2012, vol. 25, no. 1, pp. 60–65.

    Article  Google Scholar 

  76. Chen, S.P., Dong, F., Fan, W.H., Meng, Q.S., and Munir, Z.A., Interface kinetics of combustion-diffusion bonding of Ni3Al/Ni and TiAl/Ti under direct current field, J. Mater. Sci., 2013, vol. 48, pp. 1268–1274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsi, K. Combustion synthesis and the electric field: A review. Int. J Self-Propag. High-Temp. Synth. 26, 199–209 (2017). https://doi.org/10.3103/S1061386217030037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386217030037

Keywords

Navigation