Skip to main content
Log in

Solution-combustion synthesis and magnetodielectric properties of nanostructured rare earth ferrites

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Rare earth ferrites exhibit remarkable magnetodielectric properties that are sensitive to the crystallite size. There is a major challenge to produce these materials in nanoscale due to particles conglomeration during the ferrite nucleation and synthesis. In this paper we report the fabrication of nanostructured particles of rare earth ferrites in the Me-Fe-O system (Me = Y, La, Ce, and Sm) by Solution-Combustion Synthesis (SCS). The yttrium, lanthanum, cerium, samarium and iron nitrates were used as metal precursors and glycine as a fuel. Thermodynamic calculations of Y(NO3)3-2Fe(NO3)3nC2H5NO2 systems producing Y3Fe5O12 predicted an adiabatic temperature of 2250 K with generating carbon dioxide, nitrogen and water vapor. The considerable gas evolution helps to produce the synthesized powders friable and loosely agglomerated. Adjusting the glycine/metal nitrates ratio can selectively control the crystallite size and magnetodielectric properties of the ferrites. Increasing the glycine content increased the reaction temperature during the SCS and consequently the particle size. Magnetization of zero-field-cooled (ZFC) and field-cooled (FC) ferrites in the temperature range of 1.9–300 K showed different patterns when the fraction of glycine was increased. Analysis of ZFC and FC magnetization curves of annealed samples confirmed that nanoparticles exhibit superparamagnetic behavior. The increasing concentration of glycine leads to escalation of blocking temperature. Reduction of dielectric permittivity (ɛr) toward frequency indicates the relaxation processes in the composites, and the values of ɛr are shifted upward along the operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldman, A., Handbook of Modern Ferromagnetic Materials, New York: Springer, 1999

    Book  Google Scholar 

  2. Cullity, B.D. and Graham, C.D., Introduction to Magnetic Materials, Hoboken, NJ: Wiley-IEEE Press, 2011.

    Google Scholar 

  3. Handbook of Magnetism and Advanced Magnetic Materials, vol. 4: Novel Materials, Kronmüller, H. and Parkin, S., Eds., Hoboken, NJ: Wiley, 2007.

    Google Scholar 

  4. Shang, M., Zhang, C., Zhang, T., Yuan, L., Ge, L., Yuan, H., and Feng, S., The multiferroic perovskite YFeO3, Appl. Phys. Lett., 2013, vol. 102, 062903.

    Article  Google Scholar 

  5. Minh, N.Q., Ceramic Fuel Cells, J. Am. Ceram. Soc., 1993, vol. 76, no. 3, pp. 563–588.

    Article  Google Scholar 

  6. Arendt, E., Maione, A., Klisinska, A., Sanz, O., Montes, M., Suarez, S., Blanco, J., and Ruiz, P., Structuration of LaMnO3 perovskite catalysts on ceramic and metallic monoliths: Physicochemical characterization and catalytic activity in methane combustion, Appl. Catal. A, 2008, vol. 339, no. 1, pp. 1–14.

    Article  Google Scholar 

  7. Zhang, L., Hu, J.F., Song, P., Qin, H.W., and Jiang, J.H., Electrical properties and ethanol-sensing characteristics of perovskite La1−xPbxFeO3, Sens. Actuat. B, 2006, vol. 114, no. 2, pp. 836–840.

    Article  Google Scholar 

  8. Su, H., Jing, L., Shi, K., Yao, C., and Fu, H., Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts, J. Nanopart. Res., 2010, vol. 12, no. 3, pp. 967–974.

    Article  Google Scholar 

  9. Thirumalairajan, S., Girija, K., Ganesh, I., Mangalaraj, D., Viswanathan, C., Balamurugan, A., and Ponpandian, N., Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity, Chem. Eng. J., 2012, vol. 209, pp. 420–428.

    Article  Google Scholar 

  10. Wang, G., Sun, J., Zhang, W., Jiao, S., and Fang, B., Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode, Microchim. Acta, 2009, vol. 164, nos. 3–4, pp. 357–362.

    Article  Google Scholar 

  11. Nakayama, S., LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods, J. Mater. Sci., 2001, vol. 36, no. 23, pp. 5643–5648.

    Article  Google Scholar 

  12. Todorovsky, D.S., Todorovska, R.V., and Groudeva-Zotova, St., Thermal decomposition of yttrium iron citrates prepared in ethylene glycol medium, Mater. Lett., 2002, vol. 55, nos. 1–2, pp. 41–45.

    Article  Google Scholar 

  13. Moorthy, V.N., Dhara, S., Rastogi, A.C., Das, B.K., and Jain, D.V.S., Structure and growth of yttrium iron garnet thin films with enhanced magnetic properties by metalorganic chemical vapor deposition, J. Mater. Res., 1999, vol. 14, pp. 1865–1875.

    Google Scholar 

  14. Pinkas, J., Reichlova, V., Serafimidisova, A., Moravec, Z., Zboril, R., Jancik, D., and Bezdicka, P., Sonochemical synthesis of amorphous yttrium iron oxides embedded in acetate matrix and their controlled thermal crystallization toward garnet (Y3Fe5O12) and perovskite (YFeO3) nanostructures, J. Phys. Chem. C, 2010, vol. 114, no. 32, pp. 13557–13564.

    Article  Google Scholar 

  15. Sivakumar, M., Gedanken, A., Zhong, W., Jiang, Y.H., Du, Y.W., Brukental, I., Bhattacharya, D., Yeshurun, Y., and Nowik, I., Sonochemical synthesis of nanocrystal-line LaFeO3, J. Mater. Chem., 2004, vol. 14, pp. 764–769.

    Article  Google Scholar 

  16. Suresh, K., Kumar, N.R.S., and Patil, K.C., A novel combustion synthesis of spinel ferrites, orthoferrites and garnets, Adv. Mater., 1991, vol. 3, no. 3, pp. 148–150.

    Article  Google Scholar 

  17. Martirosyan, K.S., Martirosyan, N.S., and Chalykh, A.E., La3+ and Ce3+ doping of hard-magnetic ferrites, Inorg. Mater., 2004, vol. 40, no. 5, pp. 527–532.

    Article  Google Scholar 

  18. Patil, K.C., Aruna, S.T., and Mimani, T., Combustion synthesis: An update, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 6, pp. 507–512.

    Article  Google Scholar 

  19. Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, nos. 3–4, pp. 44–50.

    Article  Google Scholar 

  20. Martirosyan, K.S. and Mukasyan, A.S., Combustion synthesis of nanomaterials, in Dekker Encyclopedia of Nanoscience and Nanotechnology, Lyshevski, S.E., Ed., New York: CRC Press, 2014, pp. 983–1001.

    Google Scholar 

  21. Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, pp. 1779–1786.

    Article  Google Scholar 

  22. Greiner, W., Neise, L., and Stöcker, H., Thermodynamics and Statistical Mechanics, New York-Berlin: Springer, 1995.

    Book  Google Scholar 

  23. Shiryaev, A.A., Thermodynamics of SHS processes: Advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 4, pp. 351–362.

    Google Scholar 

  24. Saukhimov, A.A., Hobosyan, M.A., Dannangoda, G.C., Zhumabekova, N.N., Kumekov, S.E., and Martirosyan, K.S., Fabrication of yttrium ferrite nanoparticles by solution combustion synthesis, Eurasian Chem.-Technol. J., 2014, vol. 16, pp. 27–34.

    Google Scholar 

  25. Martirosyan, K.S., Wang, L., Vicent, A., and Luss, D., Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use, Nanotechnology, 2009, vol. 20, no. 40, 405609.

    Article  Google Scholar 

  26. Serrao, C.R., Sahu, J.R., Ramesha, K., and Rao, C.N.R., Magnetoelectric effect in rare earth ferrites, LnFe2O4, J. Appl. Phys., 2008, vol. 104, no. 1, 016102–016102-3.

    Article  Google Scholar 

  27. Linn, Y., Yang, H., Zhu, J., and Wang, F., Y3Fe5O12/BaFe12O19 composite with giant dielectric constant and high magnetization, Mater. Lett., 2013, vol. 93, pp. 230–232.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Martirosyan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saukhimov, A.A., Hobosyan, M.A., Dannangoda, G.C. et al. Solution-combustion synthesis and magnetodielectric properties of nanostructured rare earth ferrites. Int. J Self-Propag. High-Temp. Synth. 24, 63–71 (2015). https://doi.org/10.3103/S1061386215020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386215020065

Keywords

Navigation