Skip to main content
Log in

Solution-combustion synthesis and eletroconductivity of CaZrO3

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Solution-combustion synthesis and electroconductivity of calcium zirconate with glycine used as a fuel were explored. The reaction temperature was measured as a function of fuel to oxidant ratio (φ). Displacement of maximum combustion temperature T m toward φ > 1.0 was observed. Maximum combustion temperature (856°C) was reached at φ = 1.3. An increase in φ above 1.0 leads to formation of carbon monoxide and nitrogen oxides in gaseous reaction products when φ < 1.0. Total conductivity of the CaZrO3 ceramics was measured in the temperature range 40–800°C and a maximum value of log σ = −5.2 S cm−1 was observed at 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruff, O., Ebert, F., and Stephan, E., Beiträge zur keramik hochfeuerfester Stoffe: II. Das System ZrO2-CaO, Z. Anorg. Allgem. Chem., 2009, vol. 180, no. 1, pp. 215–224.

    Article  Google Scholar 

  2. Keler, E.K. and Andreeva, A.B., Decomposition of calcium zirconate when heated in the presence of certain oxides, Refr. Industr. Ceram., 1961, vol. 2, nos. 11–12, pp. 464–469.

    Google Scholar 

  3. Li, M., Gehre, P., and Aneziris, C.G., Investigation of calcium zirconate ceramic synthesized by slip casting and calcination, J. Eur. Ceram. Soc., 2013, vol. 33, no. 10, pp. 2007–2012.

    Article  Google Scholar 

  4. Krisnamoorty, P.R., Ramaswamy, P., and Narayana, B.H., CaZrO3 additives to enhance capacitance properties in BaZrO3 ceramic capacitors, J. Mater. Sci.: Mater. Electron., 1992, vol. 3, no. 3, pp. 176–180.

    Google Scholar 

  5. Mikkenie, R., Materials development for commercial multilayer ceramic capacitors, PhD Thesis, Enschede: University of Twente, 2011.

    Book  Google Scholar 

  6. Yua, T., Zhua, W.G., Chena, C.H., Chena, X.F., and Krishnan, R.G., Preparation and characterization of sol-gel derived CaZrO3 dielectric thin films for high-k applications, Physica B, 2004, vol. 348, nos. 1–4, pp. 440–445.

    Article  Google Scholar 

  7. Zhang, H., Fub, X., Niu, Sh., and Xin, Q., Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A = Ca, Sr, Ba) perovskite, J. Alloys Comp., 2008, vol. 459, nos. 1–2, pp. 103–106.

    Article  Google Scholar 

  8. Shi, J. and Guo, L., ABO3-based photocatalysts for water splitting, Prog. Nat. Sci.: Mater. Int., 2012, vol. 22, no. 6, pp. 592–615.

    Article  Google Scholar 

  9. Krishnan, V., Development of CaZrO3-based hydrogen sensors with oxide reference electrodes for molten aluminum, PhD Thesis, Auburn, AL: Auburn University, 2006.

    Google Scholar 

  10. Hwang, S.C. and Choi, G.M., The mixed ionic and electronic conductivity of CaZrO3 with cation non-stoichiometry and oxygen partial pressure, Solid State Ionics, vol. 179, nos. 21–26, pp. 1042–1045.

  11. Dudek, M. and Rapacz-Kmita, A., CaZrO3-based powders suitable for manufacturing electrochemical oxygen probes, Centr. Eur. J. Chem., 2013, vol. 11, no. 12, pp. 2088–2097.

    Article  Google Scholar 

  12. Li, H. and Guo, X., Impedance behavior of excess CaO-type non-stoichiometric Ca1−x ZrOCa3−δ perovskite ceramic, Curr. Appl. Phys., 2013, vol. 13, no. 3, pp. 500–504.

    Article  Google Scholar 

  13. Kingsley, J.J. and Patil, K.C., A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials, Mater. Lett., 1988, vol. 6, nos. 11–12, pp. 427–432.

    Article  Google Scholar 

  14. Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.

    Article  Google Scholar 

  15. Mukasyan, A.S. and Dinka, P., Novel method for synthesis of nanomaterials: Combustion of active impregnated layer, Adv. Eng. Mater., 2007, vol. 9, no. 8, pp. 653–657.

    Article  Google Scholar 

  16. Varma, A., Mukasyan, A.S., Deshpande, K.T., Pranda, P., and Erri, P.R., Combustion synthesis of nanoscale oxide powders: Mechanism, characterization and properties, Mater. Res. Soc. Symp. Proc., 2003, vol. 800, pp. 113–124.

    Article  Google Scholar 

  17. Mimani, T. and Patil, K.C., Solution combustion synthesis of nanoscale oxides and their composites, Mater. Phys. Mech., 2001, vol. 4, no. 2, pp. 134–137.

    Google Scholar 

  18. Ostroushko, A.A., Polymer-salt composites based on nonionic water-soluble polymers and preparation of oxide materials from them, Mendeleev Chem. J., 1998, vol. 42, nos. 1–2, pp. 153–168.

    Google Scholar 

  19. Merzhanov, A.G., Borovinskaya, I.P., and Shkiro, V.M., Phenomenon of wave localization of solid-phase reactions, Invention Certificate, USSR Register of Inventions, 1984, no. 287.

    Google Scholar 

  20. Subramania, A., Angayarkanni, N., Karthick, S.N., and Vasudevan, T., Combustion synthesis of advanced materials, Mater. Lett., 2006, vol. 60, nos. 25–26, pp. 3023–3026.

    Article  Google Scholar 

  21. Deshpande, K., Mukasyan, A.S., and Varma, A., Aqueous combustion synthesis of strontium-doped lanthanum chromite ceramics, J. Am. Ceram. Soc., 2003, vol. 86, no. 7, pp. 1149–1154.

    Article  Google Scholar 

  22. Ianos, R. and Barvinschi, P., Solution combustion synthesis of calcium zirconate, CaZrO3, powders, J. Solid State Chem., 2010, vol. 183, no. 3, pp. 491–496.

    Article  Google Scholar 

  23. Prasanth, C.S., Kumar, H.P., Pazhani, R., Solomon, S., and Thomas, J.K., Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics, J. Alloys Comp., 2008, vol. 464, nos. 1–2, pp. 306–309.

    Article  Google Scholar 

  24. Dudek, M. and Dudek, P., Ceramic oxide electrolytes based on Ca0.95Mg0.05Zr0.98O3 for solid galvanic cells, Adv. Mater. Sci., 2011, vol. 11, pp. 5–12.

    Google Scholar 

  25. Deganello, F., Marcì, G., and Deganello, G., Citratenitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach, J. Eur. Ceram. Soc., 2009, vol. 29, no. 3, pp. 439–450.

    Article  Google Scholar 

  26. Boobalan, K., Varun, A., Vijayaraghavan, R., Chidambaram, K., and Mudali, U.K., Facile, scalable synthesis of nanocrystalline calcium zirconate by the solution combustion method, Ceram. Int., 2014, vol. 40, no. 4, pp. 5781–5786.

    Article  Google Scholar 

  27. Li, J., Wang, Zh., Yang, X., Hu, L., Liu, Y., and Wang, C., Evaluate the pyrolysis pathway of glycine and glycyl glycine by TG-FTIR, J. Anal. Appl. Pyrolysis, 2007, vol. 80, no. 1, pp. 247–253.

    Article  Google Scholar 

  28. Fenimore, C.P., Formation of nitric oxide in premixed hydrocarbon flames, Symp. (Int.) on Combustion, 1971, vol. 13, no. 1, pp. 373–380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. M. Khaliullin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliullin, S.M., Zhuravlev, V.D., Russkikh, O.V. et al. Solution-combustion synthesis and eletroconductivity of CaZrO3 . Int. J Self-Propag. High-Temp. Synth. 24, 83–88 (2015). https://doi.org/10.3103/S106138621502003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138621502003X

Keywords

Navigation