Skip to main content
Log in

Abstract

A simple, one-step, and fast method based on exothermic reactions is described for synthesis of Tb3Al5O12:Ce phosphor. Light-emitting diodes (LEDs) were fabricated by depositing this phosphor on a blue chip. Photoluminescence and LED emission are compared with respective results for well-known YAG:Ce phosphor. A significant improvement in color rendering index (CRI) attributed to the red shift of Ce3+ emission was observed. Persistent emission is also reported for the first time in the Tb3Al5O12:Ce annealed in reducing atmosphere. It well correlates with Ce3+ emission and a peak around 80°C in the thermoluminescence glow. The long-lasting emission was associated with host-related electron traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chani, V.I., Yoshikawa, A., Machida, H., and Fukuda, T., fiber growth by micro-pulling-down technique, Mater. Sci. Eng., Ser. B, 2000, vol. 75, no. 1, pp. 53–60.

    Article  Google Scholar 

  2. Choi, T.Y., Song, Y.H., Lee, H.R., Senthil, K., Masaki, T., and Yoon, D.H., The effect of AlN and flux addition on luminescence properties of Ce-doped TAG phosphor for white light emitting diodes, Mater. Sci. Eng., Ser. B, 2012, vol. 177, no. 7, pp. 500–503.

    Article  Google Scholar 

  3. Hongde, Luo, H., Liu, Jie, L., Xiao, Z., Xu, B., Lu, Y., Han, L., Ren, K., and Yu, X., Synthesis and luminescence properties of Mg-Si Co-doped Tb3Al5O12:Ce3+ phosphors with blue excitation for white LEDs, J. Am. Ceram. Soc., 2012, vol. 95, no. 11, pp. 3582–3587.

    Article  Google Scholar 

  4. Kummer, F., Zwaschka, F., Ellens, A., Debray, A., and Waitl, G., Luminous substance for a light source and light source associated therewith, Int. Patent Appl. WO 01/08452, 2001.

    Google Scholar 

  5. Ellens, A. and Zwaschka, F., Leuchtstoff für Lichtquellen und zugehörige Lichtquelle, German Patent Appl. DE 19951 790 A1, 2001.

    Google Scholar 

  6. Zorenko, Yu., Gorbenko, V., Voznyak, T., Batentschuk, M., Osvet, A., and Winnacker, A., Luminescence of Mn2+ ions inTb3Al5O12 garnet, J. Lumin., 2010, vol. 130, no. 3, pp. 380–386.

    Article  Google Scholar 

  7. Che, C., Zhou, S., Lin, H., and Yi, Q., Fabrication and performance optimization of the magneto-optical (Tb1 − x Rx)3Al5O12 (R = Y, Ce) transparent ceramics, Appl. Phys. Lett., 2012, vol. 101, no. 13, pp. 131908–4.

    Article  Google Scholar 

  8. Rubinstein, C.B., Van Uitert, L.G., and Grodkiewicz, W.H., Magneto-optical properties of rare earth (III) aluminum garnets, J. Appl. Phys., 1964, vol. 35, no. 10, pp. 3069–3072.

    Article  Google Scholar 

  9. Sansalone, F.J., Compact optical isolator, Appl. Opt., 1971, vol. 10, no. 10, pp. 2329–2331.

    Article  Google Scholar 

  10. Ganschow, S., Klimm, D., Reiche, P., and Uecker, R., On the crystallization of terbium aluminum garnet, Cryst. Res. Technol., 1999, vol. 34, nos. 5–6, pp. 615–619.

    Article  Google Scholar 

  11. Lin, H., Zhou, S.M., and Teng, H., Synthesis of Tb3Al5O12(TAG) transparent ceramics for potential magneto-optical applications, Opt. Mater., 2011, vol. 33, no. 11, pp. 1833–1836.

    Article  Google Scholar 

  12. Zorenko, Y., Voznyak, T., Vistovsky, V., Zorenko, T., Nedilko, S., Batentschuk, M., Osvet, A., Winnacker, A., Zimmerer, G., Kolobanov, V., and Spassky, D., Energy transfer to Ce3+ ions in Tb3Al5O12:Ce single crystalline films, Rad. Meas., 2007, vol. 42, nos. 4-5, pp. 648–651.

    Article  Google Scholar 

  13. Zorenko, Yu. and Gorbenko, V., Growth peculiarities of the R3Al5O12 (R = Lu, Yb, Tb, Eu-Y) single crystalline film phosphors by liquid phase epitaxy, Rad. Meas., 2007, vol. 42, nos. 4–5, pp. 907–910.

    Article  Google Scholar 

  14. Chen, Y.B., Gong, M.L., Wang, G., and Su, Q., High efficient and low color-temperature white light-emitting diodes with Tb3Al5O12:Ce3+ phosphor, Appl. Phys. Lett., 2007, vol. 91, no. 7, 071117–3.

    Article  Google Scholar 

  15. Lin, Y.S. and Liu, R.S., Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination, J. Lumin., 2007, vols. 122–123, pp. 580–582.

    Article  Google Scholar 

  16. Zorenko, Yu., Gorbenko, V., Voznyak, T., Zorenko, T., Kuklinski, B., Turos-Matysyak, R., and Grinberg, M., Luminescence properties of phosphors based on Tb3Al5O12 (TbAG) terbium aluminum garnet, Opt. Spectr., 2009, vol. 106, no. 4, pp. 365–374.

    Article  Google Scholar 

  17. Chiang, C.C., Tsai, M.S., and Hon, M.H., Synthesis and photoluminescent properties of Ce3+-doped terbium aluminum garnet phosphors, J. Alloys Comp., 2007, vol. 431, nos. 1–2, pp. 298–302.

    Article  Google Scholar 

  18. Chen, Y., Wang, J., Gong, M., and Su, Q., Comparative study on the synthesis, photoluminescence, and application in InGaN-based light-emitting diodes of TAG:Ce3+ phosphors, J. Solid State Chem., 2007, vol. 180, no. 4, pp. 1165–1170.

    Article  Google Scholar 

  19. Kingsley, J.J., Suresh, K., and Patil, K.C., Combustion synthesis of fine particle metal aluminates, J. Mater. Sci., 1990, vol. 25, no. 2, pp. 1305–1312.

    Google Scholar 

  20. Kingsley, J.J., Manickam, N., and Patil, K.C., Combustion synthesis and properties of fine-particle fluorescent aluminous oxides, Bull. Mater. Sci., 1990, vol. 13, no. 3, pp.179–189.

    Article  Google Scholar 

  21. Nakatsuka, A., Yoshiasa, A., and Yamanaka, T., Cation distribution and crystal chemistry of Y3Al5 − x GaxO12 (0 ≤ x ≤ 5) garnet solid solutions, Acta Cryst., S Ser. B, 1999, vol. 55, no. 3, pp. 266–272

    Article  Google Scholar 

  22. Gracia, J., Seijo, L., Barandiaran, Z., Curulla, D., Niemansverdrieta, H., and Gennip, W., Ab initio calculations on the local structure and the 4f-5d absorption and emission spectra of Ce3+-doped YAG, J. Lumin., 2008, vol. 128, no. 8, pp. 1248–1254.

    Article  Google Scholar 

  23. Dorenbos, P., 5d-Level energies of Ce3+ and the crystalline environment, IV: Aluminates and ‘simple’ oxides, J. Lumin., 2002, vol. 99, no. 3, pp. 283–299.

    Article  Google Scholar 

  24. Su, Z., Li, C., Pang, R., Jiang, L., Shi, L., and Su, Q., Long-lasting phosphorescence study on Y3Al5O12 doped with different concentrations of Ce3+, J. Rare Earths, 2011, vol. 29, no. 5, pp. 426–430.

    Article  Google Scholar 

  25. Matsuzawa, T., Aoki, Y., Takeuchi, N., and Murayama, Y., A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+, J. Electrochem. Soc., 1996, vol. 143, no. 8, pp. 2670–2673.

    Article  Google Scholar 

  26. Zorenko, Y., Voloshinovskii, A., Savchyn, V., Voznyak, T., Nikl, M., Nejezchleb, K., Mikhailin, V., Kolobanov, V., and Spassky, D., Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets, Phys. Status Sol., Ser. B, 2007, vol. 244, no. 6, pp. 2180–2184.

    Article  Google Scholar 

  27. Yang, X., Li, H., Bi, Q., Su, L., and Xu, J., Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by temperature gradient technique (TGT), J. Cryst. Growth, 2009, vol. 311, no. 14, pp. 3692–3694.

    Article  Google Scholar 

  28. Fangtian, Y., Adrie, J., Bos, J., Shi, Q., Huang, S., and Dorenbos, P., Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+)-acceptor (Eu3+,Yb3+) pairs in Y3Al5O12, Phys. Rev., Ser. B, 2012, vol. 85, no. 11, 115101–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Yadav.

Additional information

The article is published in the original.

About this article

Cite this article

Yadav, P.J., Joshi, C.P. & Moharil, S.V. One-step combustion synthesis of Tb3Al5O12:Ce phosphor. Int. J Self-Propag. High-Temp. Synth. 23, 41–46 (2014). https://doi.org/10.3103/S1061386214010117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386214010117

Keywords

Navigation