Skip to main content
Log in

Resistometry and impedance spectroscopy for characterization of powders used in SHS reactions

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Presented are some examples of successful application of dc resistometry and impedance spectroscopy to characterization of micro and nano powders commonly used in SHS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emel’yanov, A.N., Shkiro, V.M., Rogachev, A.S., and Rubtsov, V.I., Electric and thermal conductivity of Tibased powder mixtures for self-propagating high-temperature synthesis, Izv. Vyssh. Uchebn. Zaved, Tsvet. Metall., 2002, no. 2, pp. 67–70.

    Google Scholar 

  2. Bloshenko, V.N., Bokii, V.A., and Borovinskaya, I.P., Dissolution of metal oxide film during synthesis of titanium carbide, Fiz. Goreniya Vzryva, 1984, vol. 20, no. 6, pp. 87–90 [Combust. Explos. Shock Waves (Engl. Transl.), 1984, vol. 20, no. 6, pp. 673–676].

    Google Scholar 

  3. Mokrushin, V.V., General conduction theory and resistometric characterization metal powders, Proc. All-Russia Conf on Combustion and Explosion in Physical Chemistry and Process Engineering of Inorganic Materials, 2002, Chernogolovka (Moscow), pp. 268–274.

    Google Scholar 

  4. Mokrushin, V.V. and Tsarev, M.V., Resistivity Measurements for Characterization of SHS Powders, Int. J. Self-Prop. High-Temp. Synth., 2007, vol. 16, no. 2, pp. 96–104.

    Article  Google Scholar 

  5. Tsarev, M.V., Mokrushin, V.V., Sten’gach, A.V., Tarasova, A.I., Berezhko, P.G., Kremzukov, I.K., and Zabavin, E.V., A study of the oxidation of titanium hydride powder by measurements of its electrical resistance, Zh. Fiz. Khim., 2010, vol. 84, no. 4, pp. 767–772 [Russ. J. Phys. Chem., Ser. A (Engl. Transl.), 2010, vol. 84, no. 4, pp. 679–683].

    Google Scholar 

  6. Bal’shin, M.Yu., Nauchnie osnovy poroshkovoi metallurgii i metallurgii volokna (Fundamentals of Powder and Fiber Metallurgy), Moscow: Metallurgiya, 1972.

    Google Scholar 

  7. Skorokhod, V.V., Theory of the physical properties of porous and composite materials and the principles for control of their microstructure in manufacturing processes, Porosk. Metall., 1995, vol. 34, nos. 1–2, pp. 53–71 [Powder Metall. Metal Ceram. (Engl. Transl.), 1995, vol. 34, nos. 1–2, pp. 48–63].

    Google Scholar 

  8. Mokrushin, V.V., Generalized conductivity of powders under load: Patterns of behavior, Dokl. Akad. Nauk, 1997, vol. 357, no. 3, pp. 332–334 [Dokl. Phys. (Engl. Transl.), 1997, vol. 42, no. 11, pp. 586–589].

    Google Scholar 

  9. Mokrushin, V.V. and Berezhko, P.G., Generalized conductivity of powders and percolation theory, Dokl. Akad. Nauk, 1999, vol. 368, no. 4, pp. 470–473 [Dokl. Phys. (Engl. Transl.), 1999, vol. 44, no. 10, pp. 656–660].

    Google Scholar 

  10. Kochetov, N.A., Rogachev, A.S., Emel’yanov, A.N., Illarionova, E.V., and Shkiro, V.M., Microstructure of heterogeneous mixtures for gasless combustion, Fiz. Goreniya Vzryva, 2004, vol. 40, no. 5, pp. 74–80 [Combust. Explos. Shock Waves (Engl. Transl.), 2004, vol. 40, no. 5, pp. 564–570].

    Google Scholar 

  11. Tsarev, M.V. and Mokrushin, V.V., Effect of granulometric properties of scandium powder on its conductivity, Zh. Tekh. Fiz., 2007, vol. 77, no. 3, pp. 80–86 [Tech. Phys. (Engl. Transl.), 2007, vol. 52, no. 3, pp. 369–375].

    Google Scholar 

  12. Tsarev, M.V., Mokrushin, V.V., and Zabavin, E.V., Electric conductivity of zirconium hydride powders with different particle size, Zh. Funkts. Mater., 2008, no. 5, pp. 192–197.

    Google Scholar 

  13. Gusev, A.I., Nanokrisyallicheskie materially: Metody polucheniya i svoistva (Nanoctystalline Materials: Preparation and Properties), Yekaterinburg: Izd. UrO RAN, 1998.

    Google Scholar 

  14. Tsarev, M.V., Loshkarev, V.N., Postnikov, A.Yu., and Mokrushin, V.V., Reactivity and conductivity of nano and micro-sized Ti and Al powders, Materialovedenie, 2008, no. 10, pp. 24–28.

    Google Scholar 

  15. Morokhov, I.D., Trusov, L.I., and Lapovok, V.N., Fizicheskie yavleniya v ultradispersnykh sredakh (Physical Phenomena in Finely Dispersed Media), Moscow: Energoatomizdat, 1984.

    Google Scholar 

  16. Vasil’ev, R.B., Dorofeev, S.G., Rumyantseva, M.N., Ryabova, L.I., and Gas’kov, A.M., Impedance spectroscopy of ultrafine-grained SnO2 ceramics with variable grain size, Fiz. Tekh. Poluprovod., 2006, vol. 40, no. 1, pp. 108–111 [Semiconductors (Engl. Transl.), vol. 40, no. 1, pp. 104–107].

    Google Scholar 

  17. Pavlov, S.S., Temperature dependence for specific conductivity of W and Ni nanopowders, in Sovremennaya nauka: Aktual’nye problemy teorii i praktiki, Ser. Estestvennye i tekhnicheskie nauki, 2012, no. 1, pp. 22–27.

    Google Scholar 

  18. Frolov, Yu.V. and Pivkina, A.N., Fractal structure and features of combustion in heterogeneous condensed systems, Fiz. Goreniya Vzryva, 1997, vol. 33, no. 5, pp. 3–19 [Combust. Explos. Shock Waves (Engl. Transl.), 1997, vol. 33, no. 5, pp. 513–527].

    Google Scholar 

  19. Gulyaev, P.Yu., Dolmatov, A.V., Milyukova, I.V., Trifonov, A.L., and Shiryaev, S.A, Numerical modeling of fractal packing structures in SHS powders, Polzunov. Al’manakh, 2007, no. 3, pp. 39–41.

    Google Scholar 

  20. Odelevskii, V.I., Calculation of generalized conductivity for heterogeneous systems, Zh. Tech. Fiz., 1951, vol. 21, no. 6, pp. 667–685.

    Google Scholar 

  21. Mokrushin, V.V., Berezhko, P.G., Yaroshenko, V.V., Golubev, V.A., and Balandin, V.A., A method for measuring the thickness of coatings on powder particles, USSR Inventor’s Certificate 1598600, 1990; Byull. Izobret., 1999, no. 23.

    Google Scholar 

  22. Obholtz, O.Ya., Berezko, V.V., Frolova, L.M., Dobrusin, S.Yu., and Shevlyakov, V.V., Estimates of oxygen amounts in oxide films of Ta powders, Tsvet. Met., 2004, no. 6, pp. 94–96.

    Google Scholar 

  23. Poristye pronitsaemye materially: Spravochnik (Porous Penetrable Materials: A Handbook), Belov, S.V., Ed., Moscow: Metallurgiya, 1987.

    Google Scholar 

  24. Impedance Spectroscopy: Theory, Experiment, and Applications, Barsoukov, E. and Ross, M.J., Eds., New York: Wiley, 2005.

    Google Scholar 

  25. Irvin, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, pp. 132–138.

    Article  Google Scholar 

  26. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: Izd. St.-Petersb. Gos. Univ., vol. 1, 2000.

    Google Scholar 

  27. Poklonskii, N.A. and Gorbachuk, N.I., Osnovy impedansnoi spektroskopii kompozitov:Kurs lektsii (Fundamentals of Impedance Spectroscopy of Composites: A Course of Lectures), Minsk: Izd. BGU, 2005.

    Google Scholar 

  28. Mokrushin, V.V., Golubev, V.A., Yaroshenko, V.V., and Balandin, V.A., A method for measuring electrophysical parameters of powders, USSR Inventor’s Certificate 1540482, 1989; Byull. Izobret., 1999, no. 23.

    Google Scholar 

  29. Ukshe, A.E. and Ukshe, E.A., Impedance of solid polycrystalline electrolyte, Elektrokhimiya, 1981, vol. 17, no. 5, pp. 776–780.

    Google Scholar 

  30. Sakharova, A.Ya., Sevast’yanov, A.E., Pleskov, Yu.V., Teplitskaya, G.L., Surikov, V.V., and Voloshin, A.A., Electrodes of synthetic semiconducting diamond: Electric conductivity as derived from impedance measurements, Elektrokhimiya, 1991, vol. 27, no. 2, pp. 263–268.

    Google Scholar 

  31. Poklonskii, N.A., Gorbachuk, N.I., Pototskii, I.V., and Trofimchuk, D.A, Electrical conductivity of composite materials based on fine-particle silicon near the metalinsulator transition, Neorg. Mater., 2004, vol. 40, no. 11, pp. 1293–1298 [Inorg. Mater. (Engl. Transl.), 2004, vol. 40, no. 11, pp. 1133–1137].

    Article  Google Scholar 

  32. Poklonskii, N.A., Gorbachuk, N.I., and Aleinikova, D.A., Impedance of Si/SiO2 composites in the vicinity of the percolation threshold, Fiz. Tverd. Tela, 2011, vol. 53, no. 3, pp. 433–437 [Phys. Solid State [Phys. Solid State (Engl. Transl.), 2011, vol. 53, no. 3, pp. 458–461].

    Google Scholar 

  33. Kennedy, A.R. and Lopez, V.H., The decomposition behavior of as-received and oxidized TiH2 foamingagent powder, Mater. Sci. Eng., Ser. A, 2003, vol. 357, nos. 1–2, pp. 258–263.

    Article  Google Scholar 

  34. Matijasevic-Lux, B., Banhart, J., Fiechter, S., Görke, O., and Wanderka, N., Modification of titanium hydride for improved aluminum foam manufacture, Acta Mater., 2006, vol. 54, no. 7, pp. 1887–1900.

    Article  Google Scholar 

  35. Malov, Yu.I., Fokin, V.N., and Fokina, E.E., Compounds of titanium hydride and oxygen, Zh. Neorg. Khim., 1994, vol. 39, no. 1, pp. 15–17.

    Google Scholar 

  36. Tadokoro, S.K. and Muccillo, E.N.S., Influence of precursor purity and precipitating agent on impedance spectroscopy of CeO2:Y2O3 ceramics, J. Alloys Comp., 2004, vol. 374, nos. 1–2, pp. 190–193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tsarev.

About this article

Cite this article

Mokrushin, V.V., Tsarev, M.V., Korshunov, K.V. et al. Resistometry and impedance spectroscopy for characterization of powders used in SHS reactions. Int. J Self-Propag. High-Temp. Synth. 23, 26–35 (2014). https://doi.org/10.3103/S1061386214010099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386214010099

Keywords

Navigation