Advertisement

Supported palladium catalysts prepared by surface self-propagating thermal synthesis

  • Y. S. KotolevichEmail author
  • E. V. Khramov
  • O. O. Mironenko
  • Ya. V. Zubavichus
  • V. Yu. Murzin
  • D. I. Frey
  • S. E. Metelev
  • N. B. Shitova
  • P. G. Tsyrulnikov
Article

Abstract

Supported Pd/fiber glass, Pd/γ-Al2O3/fiber glass, Pd/γ-Al2O3 catalysts were prepared by Surface Self-propagating Thermal Synthesis (SSTS) and tested in selective hydrogenation of acetylene to ethylene in the presence of CO. Temperature change in local liquid-phase surrounding of Pd atoms was monitored by XAFS in situ by modeling the catalysts synthesis. The phase composition of samples at various synthesis stages was determined by XAFS spectroscopy and synchrotron X-ray diffraction (SR XRD). The type of support material and SSTS conditions were found to affect the catalytic activity of supported Pd catalysts. Thermal synthesis of Pd catalysts on the surface of supports was found to proceed via formation of the metallic phase followed by its transformation to oxide. The catalytic activity of thus prepared catalysts on fiber glass supports can expectedly be improved upon deposition of additional support (alumina) onto a fiber glass.

Keywords

combustion synthesis surface self-propagating thermal synthesis supported Pd catalysts EXAFS in situ SR XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merzhanov, A.G. and Mukasyan, A.S., Tverdoplamennoe gorenie (Solid-Flame Combustion), Moscow: Torus Press, 2007.Google Scholar
  2. 2.
    Xanthopoulou, G. and Vekinis, G., An overview of some environmental applications of self-propagating high-temperature synthesis, Adv. Environ. Res., 2001, no. 5, pp. 117–128.Google Scholar
  3. 3.
    Merzhanov, A.G. and Borovinskaya, I.P., Historical retrospective of SHS: an autoreview, Int. J. Self-Prop. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 242–265.CrossRefGoogle Scholar
  4. 4.
    Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Prop. High-Temp. Synth., 2007, vol. 16, no. 1, pp. 23–35.CrossRefGoogle Scholar
  5. 5.
    Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226.CrossRefGoogle Scholar
  6. 6.
    Tsyrul’nikov, P.G., Zav’yalova, U.F., Shitova, N.B., Ryzhova, N.D., and Tretyakov, V.F., A method for preparation of supported vatalysts, Russ. Patent 2 284219, 2006.Google Scholar
  7. 7.
    Zav’yalova, U.F., Surface self-propagating thermal synthesis of catalysts for neutralization of exhaust gases, Cand. Sci. (Chem.) Dissertation, Moscow: Institute of Petrochemical Synthesis, 2005.Google Scholar
  8. 8.
    Kotolevich, Y.S., Tsyrul’nikov, P.G., Sharafutdinov, M.R., Mironenko, O.O., Nizovskii, A.I., and Goncharov, V.B., Pd and Ag catalysts by surface selfpropagating thermal synthesis, Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, vol. 54, nos. 1–2, pp. 370–376.Google Scholar
  9. 9.
    Afonasenko, T.N., Shlyapin, D.A., Leont’eva, N.N., Gulyaeva, T.I., Buyal’skaya, K.S., Trenikhin, M.V., and Tsyrul’nikov, P.G., Selective oxidation of carbon monoxide in hydrogen containing gas over CuO-CeO2/Al2O3 catalysts prepared by surface self-propagating thermal synthesis, Kinet. Katal., 2011, vol. 52, no. 6, pp. 843–850 [Kinet. Catal. (Engl. Transl.), 2011, vol. 52, no. 6, pp. 864–872].CrossRefGoogle Scholar
  10. 10.
    Afonasenko, T.N., Tsyrul’nikov, Gulyaeva, T.I., Leont’eva, N.N., Smirnova, N.S., Kochubey, D.I., Mironenko, O.O., Svintsitskii, D.A., Boronin, A.I., Kotolevich, Y.S., Suprun, E.A., and Salanov, A.N. (CuO-CeO2)/glass cloth catalysts for selective CO oxidation in the presence of H2: The effect of the nature of the fuel component used in their surface self-propagating high-temperature synthesis on their properties, Kinet. Katal., 2013, vol. 54, no. 1, pp. 61–70 [Kinet. Catal. (Engl. Transl.), 2013, vol. 54, no. 1, pp. 59–68].CrossRefGoogle Scholar
  11. 11.
    Mironenko, O.O., Shitova, N.B., Smirnova, N.S., Kochubei, D.I., Kibis, L.S., Gulyaev, R.V., Boronin, A.I., and Tsyrulnikov, P.G., Alumopalladium catalysts for selective hydrogenation of acetylene into ethylene as prepared by surface self-propagating thermal synthesis (SSTS), Khim. Inter. Ustoich. Razv., 2013, no. 1, pp. 79–89.Google Scholar
  12. 12.
    Mironenko, O.O., Kotolevich, Y.S., Sharafutdinov, M.R., Smirnova, N.S., Kochubey, D.I., Gulyaev, R.V., Boronin, A.I., Protasova, O.V., Trenikhin, M.V., and Tsyrul’nikov, P.G., The surface selfpropagating termosynthesis (SSTS) of Pd/γ-Al2O3, Pd/fiber glass and Pd/γ-Al2O3/fiber glass catalysts of selective liquid phase hydrogenation of acetylene to ethylene, 15th Int. Congr. on Catalysis, Munich, 2012.Google Scholar
  13. 13.
    Moore, J.J. and Feng, H.J., Combustion synthesis of advanced materials, I: Reaction parameters, Prog. Mater. Sci., 1995, vol. 39, pp. 243–273.CrossRefGoogle Scholar
  14. 14.
    Moore, J.J. and Feng, H.J., Combustion synthesis of advanced materials, II: Classification, application, and modeling, Prog. Mater. Sci., 1995, vol. 39, pp. 275–316.CrossRefGoogle Scholar
  15. 15.
    Trambukis, J. and Munir, Z.A., Effect of particle dispersion on the mechanism of combustion synthesis of titanium silicide, J. Am. Ceram. Soc., 1990, vol. 73, no. 5, pp. 1240–1245.CrossRefGoogle Scholar
  16. 16.
    Gras, Ch., Charlot, F., Gaffet, E., Bernard, F., and Niepce, J.C., In situ synchrotron characterization of mechanically activated self-propagating high-temperature synthesis applied to the Mo-Si system, Acta Mater., 1999, vol. 47, no. 7, pp. 2113–2123.CrossRefGoogle Scholar
  17. 17.
    Boutefnouchet, H., Curfs, C., Triki, A., Boutefnouchet, A., and Vrel, D., Self-propagating high-temperature synthesis mechanisms within the TiC-Ni system: a time-resolved X-ray diffraction study, Powder Technol., 2012, vol. 217, pp. 443–450.CrossRefGoogle Scholar
  18. 18.
    Gauthier, V., Bernard, F., Gaffet, E., Josse, C., and Larpin, J.P., In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating hightemperature synthesis reaction, Mater. Sci. Eng., Ser. A, 1999, vol. 272, pp. 334–341.CrossRefGoogle Scholar
  19. 19.
    Cabouro, G., Chevalier, S., Gaffet, E., Vrel, D., Boudet, N., and Bernard, F., In situ synchrotron investigation of MoSi2 formation mechanisms during currentactivated SHS sintering, Acta Mater., 2007, vol. 55, no. 18, pp. 6051–6063.CrossRefGoogle Scholar
  20. 20.
    Riley, D.P., Oliver, C.P., and Kisi, E.H., In-situ neutron diffraction of titanium silicide, Ti5Si3, during self-propagating high-temperature synthesis (SHS), Intermetallics, 2006, vol. 14, no. 1, pp. 33–38.CrossRefGoogle Scholar
  21. 21.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Structural materials science end-station at the Kurchatov synchrotron radiation source: Recent instrumentation upgrades and experimental results, Nucl. Instr. Meth. Phys. Res., Ser. A, 2009, vol. 603, nos. 1–2, pp. 95–98.CrossRefGoogle Scholar
  22. 22.
    Veligzhanin, A.A., Zubavichus, Ya.V., Chernyshov, A.A., Trigub, A.L., Khlebnikov, A.S., Nizovskii, A.I., Khudorozhkov, A.K., Beck, I.E., and Bukhtiyarov, V.I., An in-situ cell for investigation of the catalyst structure using synchrotron radiation, Zh. Strukt. Khim. Pril., 2010, vol. 51, pp. 26–32 [J. Struct. Chem. Suppl. (Engl. Transl.), 2010, vol. 51, pp. S20–S27].Google Scholar
  23. 23.
    Athena, R.B. and Hephaestus, A., Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Rad., 2005, vol. 12, no. 4, pp. 537–541.CrossRefGoogle Scholar
  24. 24.
    Newville, M., IFEFFIT: Interactive XAFS analysis and IFEF fitting, J. Synchrotron Rad., 2001, vol. 8, no. 3, pp. 322–324.CrossRefGoogle Scholar
  25. 25.
    Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Real-space multiple-scattering calculation and interpretation of X-ray-absorption nearedge structure, Phys. Rev., Ser. B, 1998, no. 58, pp. 7565–7576.Google Scholar
  26. 26.
    Wojdyr, M., Fityk 0.8.1: A curve fitting and data analysis program, 2007; http://www.unipress.waw.pl/fityk/ Google Scholar
  27. 27.
    Petricek, V., Dusek, M., and Palatinus, L., Jana2006: The crystallographic computing system. Institute of Physics, Praha, Czech Republic; http://jana.fzu.cz//
  28. 28.
    Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst., 1969, vol. 2, no. 2, pp. 65–71.CrossRefGoogle Scholar
  29. 29.
    Malmros, G. and Thomas, J.O., Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer, J. Appl. Cryst., 1977, vol. 10, no. 1, pp. 7–11.CrossRefGoogle Scholar
  30. 30.
    Shitova, N.B., Shlyapin, D.A., Afonasenko, T.N., Kudrya, E.N., Tsyrul’nikov, P.G., and Likholobov, V.A., Liquid phase hydrogenation of acetylene on the Pd/sibunit catalyst in the presence of carbon monoxide, Kin. Kat., 2011, vol. 52, no. 2, pp. 1–7 [Kin. Cat. (Engl. Transl.), 2011, vol. 52, no. 2, pp. 251–257].Google Scholar
  31. 31.
    Kotolevich, Y.S. and Tsyrul’nikov, P.G., A method for preparation of catalysts immobilized on fiber glass, Russ. Patent 2 455 067, 2012.Google Scholar
  32. 32.
    Mironenko, O.O., Shitova, N.B., Kotolevich, Y.S., Sharafutdinov, M.R., Struikhina, N.O., Smirnova, N.S., Kochubei, D.I., Protasova, O.V., Trenikhin, M.V., Stonkus, O.A., Zaikovskii, V.I., Goncharov, V.B., and Tsyryul’nikov, P.G., Investigation of Pd/fiber glass and Pd/5%γ-Al2O3/fiber glass catalyst prepared by surface self-propagating thermosynthesis (SSTS), Int. J. Self-Prop. High-Temp. Synth., 2012, vol. 21, no. 2, pp. 139–145.CrossRefGoogle Scholar
  33. 33.
    Mironenko, O.O., Physicohemical investigation of Pdcontaining catalysts for acetylene hydrogenation prepared by surface self-propagating thermal synthesis, Cand. Sci. (Chem.) Dissertation, Omsk: Omsk State Technical University, 2013.Google Scholar
  34. 34.
    Baylet, A., Marécot, P., Duprez, D., Castellazzi, P., Groppi, G., and Forzatti, P., In situ Raman and in situ XRD analysis of PdO reduction and Pd0 oxidation supported on γ-Al2O3 catalyst under different atmospheres, Phys. Chem. Chem. Phys., 2011, vol. 13, no. 10, pp. 4607–4613.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • Y. S. Kotolevich
    • 1
    Email author
  • E. V. Khramov
    • 2
  • O. O. Mironenko
    • 3
  • Ya. V. Zubavichus
    • 2
    • 4
  • V. Yu. Murzin
    • 2
    • 5
  • D. I. Frey
    • 4
  • S. E. Metelev
    • 5
  • N. B. Shitova
    • 3
  • P. G. Tsyrulnikov
    • 3
  1. 1.Centro de Nanociencias y Nanotecnologia (CNyN)Universidad Nacional Autónoma de México (UNAM)Ensenada, CAMéxico
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.Institute of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia
  4. 4.Moscow Institute of Physics and Technology (State University)MoscowRussia
  5. 5.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations