Skip to main content
Log in

Combustion of multilayer systems with random layer thickness distribution: Mathematical modeling

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Profile of combustion front in structurally unordered heterogeneous media was found to depend on the character of distribution in scale characteristics of burning media. In case of continuum distribution, dispersion markedly affects a front structure in the vicinity of transition from homogeneous to relay-race combustion. Dispersion also narrows the range of quasi-homogeneous combustion. In case of normal size distribution, oscillations of front amplitude become irregular upon increase in dispersion; this is also accompanied by an increase in the magnitude of forced vibrations caused by system inhomogeneity. Steadiness of combustion was found to depend not only on model parameters but also on the type of size distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zel’dovich, Ya.B. and Frank-Kamenetskii, D.A., Thermal Theory of Flame Propagation, Zh. Fiz. Khim., 1938, vol. 12, no. 1, pp. 100–105.

    Google Scholar 

  2. Zel’dovich, Ya.B., Combustion Theory for Gunpowders and Explosives, Zh. Eksp. Teor. Fiz., 1942, vol. 12, nos. 11–12, pp. 498–525.

    Google Scholar 

  3. Bakhman, N.N. and Belyaev, A.F., Gorenie geterogennykh kondensirovannykh sistem (Combustion of Heterogeneous Condensed Systems), Moscow: Nauka, 1967.

    Google Scholar 

  4. Aldushin, A.P. and Khaikin, B.I., Propagation of Combustion Front during Reactive Diffusion in Condensed Mixtures, in Teoriya i tekhnologiya metallotermicheskikh protsessov (Theory and Process Engineering of Metallothermic Reactions), Novosibirsk; Nauka, 1974, no. 3, pp. 11–22.

    Google Scholar 

  5. Merzhanov, A.G., Propagation of Solid Flame in a Model Heterogeneous System, Dokl. Ross. Akad. Nauk, 1997, vol. 353, no. 4, pp. 505–507 [Dokl. Phys. Chem. (Engl. Transl.), 1997, vol. 353, nos. 4–6, pp.135–138].

    Google Scholar 

  6. Krishenik, P.M., Merzhanov, A.G., and Shkadinsky, K.G., A Model of Transverse Flame Propagation in Alternating Layers of Combustible and Inert Solids, Dokl. Ross. Akad. Nauk, 2001, vol. 380, no. 3, pp. 323–327 [Dokl. Phys. (Engl. Transl.), 2001, vol. 46, no. 9, pp. 619–623].

    Google Scholar 

  7. Krishenik, P.M., Merzhanov, A.G., and Shkadinsky, K.G., Non-Stationary Regimes of transformation of Multilayered Heterogeneous Systems, Fiz. Goreniya Vzryva, 2002, vol. 38, no. 3, pp. 70–79 [Combust. Explos. Shock Waves (Engl. Transl.), 2002, vol. 38, no. 3, pp. 313–321].

    CAS  Google Scholar 

  8. Krishenik, P.M., Merzhanov, A.G., and Shkadinsky, K.G., Frontal Transformation Modes in Highly Energetic Structured Heterogeneous Systems, Fiz. Goreniya Vzryva, 2005, vol. 41, no. 3, pp. 51–61 [Combust. Explos. Shock Waves (Engl. Transl.), 2005, vol. 41, no. 3, pp. 164–173].

    CAS  Google Scholar 

  9. Krishenik, P.M. and Shkadinsky, K.G., Relay Race Combustion in Heterogeneous Systems, Fiz. Goreniya Vzryva, 2005, vol. 41, no. 5, pp. 70–76 [Combust. Explos. Shock Waves (Engl. Transl.), 2005, vol. 41, no. 5, pp. 313–321].

    CAS  Google Scholar 

  10. Krishenik, P.M., Ozerkovskaya, N.I., and Shkadinsky, K.G., Combustion Wave Propagation in Layered Heterogeneous Systems, Khim. Fiz., 2006, vol. 25, no. 7, pp. 52–57.

    CAS  Google Scholar 

  11. Kolmogorov, A.N., Normal Logarithmic Size Distribution of Crushed Particles, Dokl. Akad. Nauk SSSR, 1941, vol. 31, no. 2, pp. 99–103.

    Google Scholar 

  12. Shkodich, N.F., Mechanical Activation of Heterogeneous Reactive Systems, Cand. Sci. (Chem.) Dissertation, Chernoogolovka: ISMAN, 2011.

    Google Scholar 

  13. Rogachev, A.S. and Mukasyan, A.S., Combustion of Geterogeneous Nanosystems: A Review, Fiz. Goreniya Vzryva, 2010, vol. 46, no. 3 pp. 3–30 [Combust. Explos. Shock Waves (Engl. Transl.), vol. 46, no. 3 pp. 243–266].

    CAS  Google Scholar 

  14. Shkadinsky, K.G., Quasi-Isobaric Approximation in Combustion Theory, presented at XIV Symp. on Combustion and Explosion, Chernogolovka, 2008.

  15. Novozhilov, B.V., The Propagation Rate of the Front of Exothermic Reaction in condensed matter, Dokl. Akad. Nauk SSSR, 1961, vol. 141, no. 1. pp. 151–154 [Dokl. Acad. Sci. (Engl. Transl.), 1961, vol. 141, no. 1, pp. 863–868].

    Google Scholar 

  16. Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1968, vol. 1.

    Google Scholar 

  17. Mukasyan, A.S. Rogachev, A.S., and Varma, A., Mechanisms of Reaction Wave Propagation during Combustion Synthesis of Advanced Materials, Chem. Eng. Sci., 1999, vol. 54, nos. 15–16, pp. 3357–3367.

    CAS  Google Scholar 

  18. Varma, A., Mukasyan, S., and Hwang, S., Dynamics of Self-Propagating Reactions in Heterogeneous Media: Experiments and Model, Chem. Eng. Sci., 2001, vol. 56, no. 4, pp. 1459–1466.

    Article  CAS  Google Scholar 

  19. Merzhanov, A.G., Mukasyan, A.S., Rogachev, A.S., A.S., Sytschev, A.E., Hwang, S., and Varma, A., Microstructure of Combustion Front in Heterogeneous Gasless Mixtures (for 5Ti + 3Si Mixtures Taken as an Example), Fiz. Goreniya Vzryva, 1996, vol. 32, no. 6, pp. 68–81 [Combust. Explos. Shock Waves (Engl. Transl.), 1996, vol. 32, no. 6, pp. 334–346].

    CAS  Google Scholar 

  20. Shkadinsky, K.G., Khaikin, B.I., and Merzhanov, A.G., Propagation of Pulsating Front of Exothermic Reaction in Condensed Media, Fiz. Goreniya Vzryva, 1971, vol. 7, no. 1, pp. 19–28 [Combust. Explos. Shock Waves (Engl. Transl.), 1971, vol. 46, no. 3, pp. 15–22].

    Google Scholar 

  21. Makhviladze, G.M. and Novozhilov, B.M., 2D Stability of Combustion in Heterogeneous Systems, Prikl. Mekh. Tekh. Fiz., 1971, no. 5, pp. 51–59.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Krishenik.

About this article

Cite this article

Krishenik, P.M., Rogachev, S.A. & Shkadinsky, K.G. Combustion of multilayer systems with random layer thickness distribution: Mathematical modeling. Int. J Self-Propag. High-Temp. Synth. 21, 83–88 (2012). https://doi.org/10.3103/S1061386212020057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386212020057

Keywords

Navigation