Skip to main content
Log in

Advanced experimental facilities for SHS Studies and physico-chemical characterization of inorganic materials: An autoreview

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Overviewed are new experimental methods for investigating the processes of phase formation during SHS. The first experiments using penetrating synchrotron radiation and energy dispersive detectors for different classes of complex inorganic materials were carried out in ESRF (Grenoble, France), LURE (Orsay, France) and Daresbury (UK). A new and very sensitive thermal imaging method (Thermal Imaging Technique, TIT) is based on continuous registration of the whole combustion process by using a highly sensitive IR camera and software developed by MIKRON Instruments Co. (USA) was also used for precise registration of combustion parameters. SHS was performed on different types of pure on doped complex inorganic materials in pellet and powder form in a range of dc magnetic field induction up to 20 T and electrical field strength up to ±220 kV/m. The dc magnetic field was applied during the reaction, supplied either by permanent magnet (transverse, 1.1 T) or by an electromagnet (longitudinal, up to 20 T). The dc electrical field was applied along direction of the combustion wave propagation. The combined processes of SHS and SLS (Selective Laser Sintering) of 3D articles for different powdered compositions was realized with optimal parameters of laser irradiation, under what SHS reactions proceeded in controlled regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi, H.C. and Moore, J.J., Self-Propagating High-Temperature (Combustion) Synthesis (SHS) of Powder-Compacted Materials, J. Mater. Sci., 1990, vol. 25, no. 2, pp. 1159–1168.

    CAS  Google Scholar 

  2. Raquet, B.J., Coey, M.D., Wirth, S., and Von Molnar, S., 1/f Noise in the Half-Metallic Oxides CrO2, Fe3O4, and La2/3Sr1/3MnO3, Phys. Rev., Ser. B, 1999, vol. 59, no. 19, pp. 12435–12443.

    Article  CAS  ADS  Google Scholar 

  3. Boldyrev, V.V., Aleksandrov, V.V., Korchagin, M.A., Tolochko, B.P., Gusenko, S.N., Sokolov, A.S., Sheromov, M.A., and Liakhov, N.Z., Phase Dynamics during Combustion Synthesis of Nickel Aluminide, Dokl Akad. Nauk SSSR, 1981, vol 259, no. 5, pp. 1127–1129.

    CAS  Google Scholar 

  4. Chariot, F., Bernard, F., Gaffet, E., Klein, D., and Niepce, J.C., In Situ Time-Resolved Diffraction Coupled with a Thermal IR Camera to Study Mechanically Activated SHS Reaction: Case of Fe-Al Binary System, Acta Mater., 1999, vol. 47, no. 2, pp. 619–629.

    Article  Google Scholar 

  5. Parkin, I.P., Pankhurst, Q.A., Affleck, L., Aguas, M.D., and Kuznetsov, M.V., Self-Propagating High-Temperature Synthesis of BaFe12O19Mg0.5Zn0.5Fe2O4 and Li0.5Fe2.5O4: Time Resolved X-Ray Diffraction Studies (TRXRD), J. Mater. Chem., 2001, vol. 11, no. 1, pp. 193–199.

    Article  CAS  Google Scholar 

  6. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang S., Complex Behavior of Self-Propagating Reaction Waves in Heterogeneous Media, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 19, pp. 11053–11058.

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Kuznetsov, M.V., Pankhurst, Q.A., and Parkin, I.P., SHS of Magnesium Zinc Chromium Ferrites Mg0.5Zn0.5Fe2−x CrxO4 (0 < x < 1.5), J. Mater. Chem., 1998, vol. 8, no. 12, pp. 2701–2706.

    Article  CAS  Google Scholar 

  8. Parkin, I.P., Elwin, G.E., Komarov, A.V., Bui, Q.T., Pankhurst, Q.A., Fernandez Barquin, L., and Morozov, Yu.G., Convenient, Low Energy Routes to Hexagonal Ferrites MFe12O19 (M = Sr, Ba) from SHS Reactions of Iron, Iron Oxide and MO2 in Air, Adv. Mater., 1997, vol. 9, no. 8, pp. 643–645.

    Article  CAS  Google Scholar 

  9. Parkin, I.P., Kuznetsov, M.V., and Pankhurst, Q.A., SHS of BaFe12 − x CrxO19 and Li0.5Fe2.5 − x CrxO4, J. Mater. Chem., 1999, vol. 9, no. 1, pp. 273–281.

    Article  CAS  Google Scholar 

  10. Kuznetsov, M.V., Pankhurst, Q.A., and Parkin, I.P., SHS of Lithium Chromium Ferrites Li0.5Fe2.5 − x CrxO4, J. Phys., Ser. D, 1998, vol. 31, no. 20, pp. 2886–2893.

    Article  CAS  ADS  Google Scholar 

  11. Kuznetsov, M.V., Fernandes-Barquin, L., Pankhurst, Q.A., and Parkin, I.P., SHS of Barium-Chromium Ferrites BaFe12 − x CrxO19, J. Phys., Ser. D, 1999, vol. 32, no. 21, pp. 2590–2598.

    Article  CAS  ADS  Google Scholar 

  12. Kirdyashkin, A.I., Maksimov, Yu.M., and Merzhanov, A.G., Effect of Magnetic Field on Combustion of Heterogeneous Systems Yielding Condensed Reaction Products, Fiz. Goreniya Vzryva, 1986, vol 22, no. 6, pp. 66–72 [Combust. Explos. Shock Waves (Engl. transl.), 1986, vol. 22, pp. 700–706].

    Google Scholar 

  13. Komarov, A.V., Morozov, Y.G., Avakyan, P.B., and Nersesyan, M.D., Influence of DC Magnetic Field on Structurization and Parameters of Self-Propagating High-Temperature Synthesis of Strontium Hexaferrite, Int. J. SHS, 1994, vol. 3, no. 3, pp. 207–212.

    CAS  Google Scholar 

  14. Morozov, Yu.G., Kuznetsov, M.V., and Merzhanov, A.G., Electric Fields in Self-Propagating High-Temperature Synthesis, Int. J. SHS, 1997, vol. 6, no. 1, pp. 1–13.

    CAS  Google Scholar 

  15. Shishkovsky, I.V., Kuznetsov, M.V., and Morozov, Yu.G., New Methods for Development of Three-Dimensional Ceramics Based on Barium Hexaferrite with Chromium Additives, Steklo Keramika, 2003, vol. 60, no. 6, pp. 14–18 [Glass Ceram. (Engl. transl.), 2003, vol. 60, nos. 5–6, pp. 174–178].

    Google Scholar 

  16. Rodriguez-Carvajal, J., Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Physica, Ser. B, 1993, vol. 192, no. 1, pp. 55–69.

    Article  CAS  ADS  Google Scholar 

  17. Spiers, H., Parkin, I.P., Pankhurst, Q.A., Affleck, L., Green, M., Caruana, D.J., Kuznetsov, M.V., Yao, J., Vaughan, G., Terry, A., and Kvick, A., Self-Propagating High-Temperature Synthesis of Magnesium Zinc Ferrites (Mg,Zn1 − x Fe2O4): Thermal Imaging and Time Resolved X-Ray Diffraction Experiments, J. Mater. Chem., 2004, vol. 14, no. 7, pp. 1104–1111.

    Article  CAS  Google Scholar 

  18. Kuznetsov, M.V. and Morozov, Yu.G., Effect of Electric and Magnetic Fields on the Processes of Self-Propagating High-Temperature Synthesis, Mater. Sci. Forum, 2001, vols. 378–381, pp. 563–568.

    Article  Google Scholar 

  19. Shishkovsky, I.V., Kuznetsov, M.V., Morozov, Yu.G., and Parkin, I.P., Laser-Induced Combustion Synthesis of 3D Functional Materials: Computer-Aided Design, J. Mater. Chem., 2004, vol. 14, no. 23, pp.3444–3448.

    Article  CAS  Google Scholar 

  20. Williams, J.D. and Decard, C.D., Advances in Modeling the Effects of Selected Parameters on the SLS Process, Rapid Prototyping J., 1998, vol. 4, no. 2, pp. 90–100.

    Article  Google Scholar 

  21. Gureev, D.M., Petrov, A.L., and Shishkovsky I.V., Formation of Intermetallics Phases under Laser Sintering of Powdered SHS Compositions, Proc. SPIE, 1998, vol. 3688, pp. 237–242.

    Article  ADS  Google Scholar 

  22. Gureev, D.M., Ruzhechko, R.V., and Shishkovsky, I.V., Selective Laser Sintering of PZT Ceramic Powders, Pis’ma Zh. Tekh. Fiz., 2000, no. 6, pp. 84–89 [Tech. Phys. Lett. (Engl. transl.), 2000, vol. 26, no. 3, pp. 262–264].

  23. Waymann, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Harlow, I., Bailey, S.M., Chumey, H.C., and Nuttal, R.L., The NBS Tables of Chemical and Thermodynamic Properties, Washington DC: American Chemical Society, 1982.

    Google Scholar 

  24. Parkin, I.P., Solid State Metathesis Reaction for Metal Borides, Silicides, Pnictides and Chalcogenides: Ionic or Elemental Pathways, Chem. Soc. Rev., 1996, vol. 25, no. 3, pp. 199–207.

    Article  CAS  Google Scholar 

  25. Parkin, I.P., Affleck, L., Aguas, M.D., Cross, W., Kuznetsov, M.V., Pankhurst, Q.A., and Steer, A., SHS of Spinel and Hexagonal Ferrites: Reaction in a Magnetic Field, Abstracts of Papers of the American Chemical Society, 1999, vol. 21.7, part 1, pp. U1102–U1102.

    Google Scholar 

  26. Kuznetsov, M.V., Parkin, I.P., Kvick, A., Busurin, S.M., Shishkovsky, I.V., and Morozov, Yu.G., Advanced Ways and Experimental Methods in Self-Propagating High-Temperature Synthesis (SHS) of Inorganic Materials, Mater. Sci. Forum, 2006, vol. 518, pp. 181–188.

    Article  CAS  Google Scholar 

  27. Tret’yakov, Yu.D., Khimiya nestechiometrichnych okislov (Chemistry of Non-Stoichiometric Oxides), Moscow: Izd. MGU, 1974.

    Google Scholar 

  28. Dem’yanets, L.N., Ivanov-Shits, A.K., Kireev, V.V., and Ksenofontov, D.A., Electric-Field Effect on Crystallization in the Li3PO4-Li4GeO4-Li2MoO4-LiF System, Neorg. Mater., 2004, vol. 40, no. 8, pp. 1001–1005 [Inorg. Mater. (Engl. trans), 2004, vol. 40, no. 8, pp. 874–875].

    Google Scholar 

  29. Aguas, M.D., Affleck, L., Parkin, I.P., Kuznetsov, M.V., Steer, W.A., Pankhurst, Q.A., Fernandez-Barquin, L., Roberts, M.A., Boamfa, M.I., and Perenboom, J.A.A.J., The Effect of Large Magnetic Fields on Solid State Combustion Reactions: Novel Micro structure, Lattice Contraction and Reduced Coercivity in Barium Hexaferrite, J. Mater. Chem., 2000, vol. 10, no. 2, pp. 235–237.

    Article  CAS  Google Scholar 

  30. Cooper, K.G., Rapid Prototyping Technology, New York: Marcel Dekker, 2001.

    Book  Google Scholar 

  31. Morozov, Yu.G., Nefedov, S.A., Panin, A.I., Petrov, A.L., and Shishkovsky, I.V., Conditions for Selective Laser Sintering of Al-Ti Powders, Izv. Akad. Nauk, Ser. Fiz., 2002, vol. 66, no. 8, pp. 1156–1158.

    CAS  Google Scholar 

  32. Shishkovsky, I.V., Tarasova, E.Yu., Zhuravel’, L.V., and Petrov, A.L., Synthesis of Biocomposite Based on Titanium Nickelide and Hydroxyapatite in Conditions of Selective Laser Sintering, Pis’ma Zh. Tekh. Fiz., 2001, vol. 27, no. 5, pp. 81–86 [Tech. Phys. Lett. (Engl. transl.), 2001, vol. 27, no. 3, pp. 211–213].

    Google Scholar 

  33. Ivanov, I.I., Shishkovsky, I.V., and Shcherbakov, V.I., Optimization of Multilayer Selective Laser Sintering of Volumetric Articles, Mekh. Kompozits. Mater. Konstr., 1999, vol. 5, no. 2, pp. 29–41.

    Google Scholar 

  34. Shishkovsky, I.V., Zakiev, S.E., Scheck, Yu.B., Kuznetsov, M.V., Morozov, Yu.G., Vityaz, P.A., Belyaev, A.V., Talako, T.L., Parkin, I.P., Pankhurst, Q.A., Khina, B.B., and Fernandes-Barquin, L., Selective Laser-Assisted Sintering of SHS Ferrites in Powder Systems based on Ba-Fe and Li-Fe Compositions, Proc. IV Int. Seminar on Modern Problems of Combustion and its Applications, Minsk, Belarus, 2001, pp. 59–62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kuznetsov.

Additional information

The text was submitted by the author in English.

About this article

Cite this article

Kuznetsov, M.V., Shishkovskii, I.V. & Morozov, Y.G. Advanced experimental facilities for SHS Studies and physico-chemical characterization of inorganic materials: An autoreview. Int. J Self-Propag. High-Temp. Synth. 19, 191–205 (2010). https://doi.org/10.3103/S1061386210030052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386210030052

Key words

Navigation