Skip to main content
Log in

Effect of mechanical activation on SHS: Physicochemical mechanism

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Mechanically activated SHS (MASHS) is currently a subject of extensive investigation but up to now a mechanism of strong influence of mechanoactivation (MA) on subsequent SHS is not well understood. In this work, a system of relatively simple estimates is developed to analyze the physicochemical mechanism of the effect of preliminary MA on SHS, in particular, the role of the stored energy of cold plastic deformation and that of accumulated point defects. Brief analysis of the known MASHS theories is presented. A qualitative explanation of the effect of MA on SHS is proposed based on the modern theory of deformation-enhanced interdiffusion during MA and state-of-the-art conceptions of solid-state nucleation in the field of concentration gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard, F. and Gaffet, E., Mechanical Alloying in SHS Research, Int. J. SHS, 2001, vol. 10, no. 2, pp. 109–132.

    CAS  Google Scholar 

  2. Maglia, F., Milanese, C., Anselmi-Tamburini U., Doppiu, S., and Cocco, G., Combustion Synthesis of Mechanically Activated Powders in the Nb-Si System, J. Mater. Res., 2002, vol. 17, no. 8, pp. 1992–1999.

    Article  ADS  CAS  Google Scholar 

  3. Medda, E., Delogu, F., and Cao, G., Combination of Mechanochemical Activation and Self-Propagating Behavior for the Synthesis of Ti Aluminides, Mater. Sci. Eng., Ser. A, 2003, vol. 361, nos. 1–2, pp. 23–28.

    Article  CAS  Google Scholar 

  4. Gras, C., Gaffet, E., and Bernard, F., Combustion Wave Structure during the MoSi2 Synthesis by Mechanically-Activated Self-Propagating High-Temperature Synthesis (MASHS): In Situ Time-Resolved Investigations, Intermetallics, 2006, vol. 14, no. 5, pp. 521–529.

    Article  CAS  Google Scholar 

  5. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova. A.P., and Lyakhov, N.Z., Solid-State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on Process Parameters and Combustion Product Composition, Combust. Explos. Shock Waves, 2003, vol. 39, no. 1, pp. 43–50.

    Article  Google Scholar 

  6. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova. A.P., and Lyakhov, N.Z., Solid-State Combustion in Mechanically Activated SHS Systems. II. Effect of Mechanical Activation Conditions on Process Parameters and Combustion Product Composition, Combust. Explos. Shock Waves, 2003, vol. 39, no. 1, pp. 51–58.

    Article  CAS  Google Scholar 

  7. Suryanarayana, C., Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, vol. 46, nos. 1–2, pp. 1–184.

    Article  CAS  Google Scholar 

  8. Zhang, D.L., Processing of Advanced Materials Using High-Energy Mechanical Milling, Prog. Mater. Sci., 2004, vol. 49, nos. 3–4, pp. 537–560.

    Article  CAS  Google Scholar 

  9. Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M., The Mathematical Theory of Combustion and Explosions, New York: Plenum Press, 1985.

    Google Scholar 

  10. Smolyakov, V.K., Combustion of Mechanically Activated Heterogeneous Systems, Combust. Explos. Shock Waves, 2005, vol. 41, no. 3, pp. 319–325.

    Article  Google Scholar 

  11. Lapshin, O.V., Makrokinetika vysokotemperaturnogo sinteza khimicheskih soedinenii v usloviyakh teplovogo vzryva poroshkovyh smesei (Macrokinetics of High-Temperature Synthesis of Chemical Compounds in Conditions of Thermal Explosion in Powder Mixtures), Doctoral (Phys.-Math.) Dissertation, Tomsk: Tomsk State University, 2007.

    Google Scholar 

  12. Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Macroscopic Theory of Mechanochemical Synthesis in Heterogeneous Systems, Int. J. SHS, 2007, vol. 16, no. 1, pp. 1–11.

    CAS  Google Scholar 

  13. Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mathematical Model of Mechanochemical Synthesis in a Macroscopic Approximation, Teor. Osnovy Khim. Technol., 2008, vol. 42, no. 1, pp. 57–62.

    Google Scholar 

  14. Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Dynamics of Non-Isothermal Mechanochemical Synthesis in Heterogeneous Systems, Teor. Osnovy Khim. Technol., 2008, vol. 42, no. 2, pp. 198–207.

    Google Scholar 

  15. Levashov, E.A., Kurbatkina, V.V., Rogachev, A.S., and Kochetov, N.A., Mechanoactivation of SHS Systems and Processes, Int. J. SHS, 2007, vol. 16, no. 1, pp. 46–50.

    CAS  Google Scholar 

  16. Bever, M.B., Holt, D.L., and Titchener, A.L., The Stored Energy of Cold Work, Prog. Mater. Sci., 1973, vol. 17, pp. 1–190.

    Article  Google Scholar 

  17. Wu, X.-L. and Ma, E., Dislocations in Nanocrystalline Grains, Appl. Phys. Lett., 2006, vol. 88, no. 23, 231911.

  18. Dieter, G.E., Mechanical Metallurgy, New York: McGraw-Hill, 1986.

    Google Scholar 

  19. Tikhonov, L.V., Kononenko, V.A., Prokopenko, G.I., and Rafalovski, V.A., Struktura i svoystva metallov i splavov: Spravochnik (Structure and Properties of Metals and Alloys: A Handbook), Kiev: Naukova Dumka, 1986.

    Google Scholar 

  20. Frost, H.J. and Ashby, M.F., Deformation-Mechanism Maps, Oxford: Pergamon Press, 1982.

    Google Scholar 

  21. Smithells Metals Reference Book, Brandes, E.A. and Brook, G.B., Eds., Oxford: Butterworth-Heinemann, 1992.

    Google Scholar 

  22. Zhao, Y.H., Sheng, H.W., and Lu, K., Microstructure Evolution and Thermal Properties in Nanocrystalline Fe during Mechanical Attrition, Acta Mater., 2001, vol. 49, no. 2, pp. 365–375.

    Article  CAS  Google Scholar 

  23. Zhao, Y.H., Lu, K., and Zhang, K., Microstructure Evolution and Thermal Properties in Nanocrystalline Cu during Mechanical Attrition, Phys. Rev., Ser. B, 2002, vol. 66, no. 8, 085404.

  24. Nabarro, F.R.N., Basinski, Z.S., and Holt, D.B., The Plasticity of Pure Single Crystals, Adv. Phys., 1964, vol. 50, pp. 193–323.

    Article  ADS  Google Scholar 

  25. Bokshtein, B.S., Diffuziya v metallakh (Diffusion in Metals), Moscow: Metallurgiya, 1978.

    Google Scholar 

  26. Lovshenko, G.F. and Khina, B.B., Estimation of Factors Influencing Mechanochemical Transformations during Mechanical Alloying in a Vibratory Mill, Trenie Iznos, 2005, vol. 26, no. 4, pp. 434–445.

    CAS  Google Scholar 

  27. Ungar, T., Schafler, E., Hanak, P., Bernstorff, S., and Zehetbauer, M., Vacancy Production during Plastic Deformation in Copper Determined by In Situ X-Ray Diffraction, Mater. Sci. Eng., Ser. A, 2007, vol. 462, nos. 1–2, pp. 398–401.

    Article  CAS  Google Scholar 

  28. Gras, C., Gaffet, E., Bernard, F., and Niepce, J.C., Enhancement of Self-Sustaining Reaction by Mechanical Activation: Case of a Fe-Si System, Mater. Sci. Eng., Ser. A, 1999, vol. 264, nos. 1–2, pp. 94–107.

    Article  Google Scholar 

  29. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Brief Chemical Handbook), Leningrad: Khimiya, 1978.

    Google Scholar 

  30. Wei, H., Sun, X., Zheng, Q., Guan, H., and Hu, Z., Estimation of Interdiffusivity of the NiAl Phase in Ni-Al Binary System, Acta Mater., 2004, vol. 52, no. 9, pp. 2645–2651.

    Article  CAS  Google Scholar 

  31. Ermilov, A.G., Safonov, V.V., Doroshko, L.F., Kolyakin, A.V., and Polushin, N.I., Evaluation of the Energy Accumulated during MA by XRD Analysis, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2002, no. 3, pp. 48–53.

  32. Klein, D., Niepce, J.C., Charlot, F., Gaffet, E., and Bernard, F., In Situ Time-Resolved Diffraction Coupled with a Thermal IR Camera to Study Mechanically Activated SHS Reaction: Case of Fe-Al Binary System, Acta Mater., 1999, vol. 47, no. 2, pp. 619–629.

    Article  Google Scholar 

  33. Johnson, R.A. and Lam, N.Q., Solute Segregation in Metals under Irradiation, Phys. Rev., Ser. B, 1976, vol. 13, no. 10, pp. 4364–4375.

    Article  ADS  CAS  Google Scholar 

  34. Skakov, Yu.A., High-Energy Cold Plastic Deformation, Diffusion, and Mechanochemical Synthesis, Metal Sci. Heat Treatm., 2004, vol. 46, nos. 3–4, pp. 137–145.

    Article  CAS  Google Scholar 

  35. Shtremel’, M.A., In What Direction Does Diffusion Go?, Metal Sci. Heat Treatm., 2004, vol. 46, nos. 3–4, pp. 146–147.

    Article  CAS  Google Scholar 

  36. Khina, B.B., Lovshenko, F.G., Konstantinov, V.M., and Formanek, B., Mathematical Model of Solid-State Diffusion at Periodic Plastic Deformation, Metal Phys. Adv. Technol., 2005, vol. 27, no. 5, pp. 609–623.

    CAS  Google Scholar 

  37. Khina, B.B. and Formanek, B., Mathematical Modeling of Solid-State Diffusion during Mechanical Alloying, Defect Diffus. Forum, 2006, vol. 249, pp. 105–110.

    Article  CAS  Google Scholar 

  38. Khusid, B.M. and Khina, B.B., Kinetic Model for Intermetallic Compound Formation during Interdiffusion in a Binary System, Phys. Rev., Ser. B, 1991, vol. 44, no. 19, pp. 10778–10793.

    Article  ADS  Google Scholar 

  39. Hodaj, F., Gusak, A.M., and Desre, P.J., Effect of Sharp Concentration Gradients on the Nucleation of Intermetallics in Disordered Solids: Influence of the Embryo Shape, Phil. Mag., Ser. A, 1998, vol. 77, no. 6, pp. 1471–1479.

    Article  ADS  CAS  Google Scholar 

  40. Gusak, A.M., Hodaj, F., and Bogatyrev, A.O., Kinetics of Nucleation in the Concentration Gradient, J. Phys.: Condens. Matter, 2001, vol. 13, no. 12, pp. 2767–2787.

    Article  ADS  CAS  Google Scholar 

  41. Chung, C.Y., Zhu, M., and Man, C.H., Effect of Mechanical Alloying on the Solid State Reaction Processing of Ni-36.5 at % Al Alloy, Intermetallics, 2002, vol. 10, no. 9, pp. 865–871.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Khina.

About this article

Cite this article

Khina, B.B. Effect of mechanical activation on SHS: Physicochemical mechanism. Int. J Self-Propag. High-Temp. Synth. 17, 211–217 (2008). https://doi.org/10.3103/S1061386208040018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386208040018

Keywords

PACS numbers

Navigation