Skip to main content
Log in

Abstract

During the synthesis of MAX phases using combustion synthesis (or Self-Propagating High-temperature Synthesis), the main drawback is the presence of binary phases, and especially the simple MX carbide, when X = C. Our experiments were designed in order to check whether the cooling rate of the sample immediately after synthesis might play a key role for obtaining samples with low-level carbide contents. In the best conditions, a TiC content of about 2% only has been observed. A systematic study on the direct effect of the cooling rate on the final composition has then been conducted, and confirms that high cooling rates allow the synthesis of high-purity MAX phases in the Ti-Al-C system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeitschko, W., Nowotny, H., and Benesovsky, F., Die H-Phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC, Monatsh. Chem., 1964, vol. 95, p. 1004.

    Article  CAS  Google Scholar 

  2. Barsoum, M.W., Brodkin, D., and El-Raghy, T., Layered Machinable Ceramics for High-Temperature Applications, Scr. Mater., 1997, vol. 36, no. 5, pp. 535–541.

    Article  CAS  Google Scholar 

  3. Barsoum, M.W. and El-Raghy, T., Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, no. 7, pp. 1953–1956.

    Article  CAS  Google Scholar 

  4. Barsoum, M.W. and El-Raghy, T., Room Temperature Ductile Carbides, Metall. Mater. Trans., Ser. A, 1999, vol. 30, pp. 363–369.

    Article  Google Scholar 

  5. Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid Combustion Synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, p. 283.

    Article  CAS  Google Scholar 

  6. Pampuch, R., Lis, J., et al., Ti3SiC2-Based Materials Produced by Self-Propagating High-Temperature Synthesis and Ceramic Processing, J. Mater. Synth. Process., 1993, vol. 1, no. 1, pp. 93–98.

    CAS  Google Scholar 

  7. Lis, J., Miyamoto, Y., Pampuch, R., et al., Ti3SiC2-Based Materials Prepared by HIP-SHS Technique, Mater. Lett., 1995, vol. 22, no. 3, pp. 163–168.

    Article  CAS  Google Scholar 

  8. Morgiel, J., Lis, J., and Pampuch, R., Microstructure of Ti3SiC2-Based Ceramics, Mater. Lett., 1986, vol. 27, pp. 85–89.

    Article  Google Scholar 

  9. Lis, J., Pampuch, R., Rudnik, T., et al., Reaction Sintering Phenomena of Self-Propagating High-Temperature Synthesis-Derived Ceramic Powders in the Ti-Si-C System, Solid State Ionics, 1997, vols. 101–103, no. 1, pp. 59–64.

    Google Scholar 

  10. Feng, A. Orling, T., and Munir, Z.A., Field-Activated Pressure-Assisted Combustion Synthesis of Polycrystalline Ti3SiC2, J. Mater. Res., 1999, vol. 14, pp. 925–939.

    Article  CAS  Google Scholar 

  11. Khoptiar, Y. and Gotman, I., Synthesis of Dense Ti3SiC2-Based Ceramics by Thermal Explosion under Pressure, J. Eur. Ceram. Soc., 2003, vol. 23, pp. 47–53.

    Article  CAS  Google Scholar 

  12. Barsoum, M.W., El-Raghy, T., and Ogbuji, L., Oxidation of Ti3SiC2 in Air, J. Electrochem. Soc., 1997, vol. 144, no. 7, pp. 2508–2516.

    Article  CAS  Google Scholar 

  13. Barsoum, M.W., El-Raghy, T., and Radovic, M., Ti3SiC2: A Layered Machinable Ductile Carbide, Interceram, 2000, vol. 49, pp. 226–233.

    CAS  Google Scholar 

  14. Barsoum, M.W., Yoo, H.I., Polushina, I.K., Rud, V.Yu., Rud, Yu.V., and El-Raghy, T., Electrical Conductivity, Thermopower, and Hall Effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2, Phys. Rev., Ser. B, 2000, vol. 62, no. 15, pp. 10195–10198.

    Article  Google Scholar 

  15. Chlubny, L. and Lis, J., Intermetallics as Precursors in SHS Synthesis of the Ti3AlC2, in Abstr. IX Int. Symp. on SHS, Dijon, France, 2007.

  16. Racault, C., Langlais, F., and Naslain, R., Solid-State Synthesis and Characterization of the Ternary Phase Ti3SiC2, J. Mater. Sci., 1994, vol. 29, no. 13, pp. 3384–3392.

    Article  CAS  Google Scholar 

  17. Gauthier, V., Cochepin, B., Dubois, S., and Vrel, D., Self-Propagating High-Temperature Synthesis of Ti3SiC2: Study of the Reaction Mechanism by Time-Resolved X-Ray Diffraction and Infrared Thermography, J. Am. Ceram. Soc., 2006, vol. 89, no. 9, pp. 2899–2907.

    Article  CAS  Google Scholar 

  18. Rogachev, A.S., Gachon, J.-C., Grigoryan, H.E., Vrel, D., Schuster, J.C., and Sachkova, N.V., Phase Evolution in the Ti-Al-B and Ti-Al-C systems during Combustion Synthesis: Time Resolved Study by Synchrotron Radiation Diffraction Analysis, J. Mater. Sci., 2005, vol. 40, nos. 9–10, pp. 2689–2691.

    Article  CAS  Google Scholar 

  19. Vrel, D., Girodon-Boulandet, N., Paris, S., Mazué, J.-F., Couqueberg, E., Gailhanou, M., Thiaudiére, D., Gaffet, E., and Bernard, F., A New Experimental Setup for the Time Resolved X-ray Diffraction Study of Self-Propagating High-Temperature Synthesis, Rev. Sci. Instrum., 2003, vol. 73, no. 2, pp. 422–428.

    Article  CAS  Google Scholar 

  20. Bernard, F., Paris, S., Vrel, D., Gailhanou, M., Gachon, J.-C., and Gaffet, E., Time-Resolved XRD Experiments Adapted to SHS Reactions: Past and Future, Int. J. SHS, 2002, vol. 12, no. 2, pp. 181–190.

    Google Scholar 

  21. Cochepin, B., Heian, E.M., Karnatak, N., Vrel, D., and Dubois, S., TiC nucleation/Growth Processes during CHS Reactions, Powder Technol., 2005, vol. 157, pp.92–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vrel.

About this article

Cite this article

Hendaoui, A., Andasmas, M., Amara, A. et al. SHS of high-purity MAX compounds in the Ti-Al-C system. Int. J Self-Propag. High-Temp. Synth. 17, 129–135 (2008). https://doi.org/10.3103/S1061386208020088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386208020088

Keywords

PACS numbers

Navigation