Skip to main content
Log in

Combustion and structure formation in the Ti-Ta-C-Ca3(PO4)2 system

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Biocompatible composites (Ti, Ta)C x + Ca3(PO4)2 for deposition of nanofilms onto load-bearing implants by ion-plasma sputtering were prepared from Ti + Ta + C + Ca3(PO4)2 mixtures by forced SHS compaction. The effect of Ta + C addition to green mixtures (characterized by parameter z) on the structure/phase formation in combustion products was explored. The addition of tantalum and carbon was found to have little or no influence on the burning velocity U and combustion temperature T c. Two thermal spikes exhibited by thermograms were associated with the occurrence of two consecutive reactions leading to formation of titanium and tantalum carbides. With increasing z, the grain size of (Ti, Ta)C was found to diminish, its relative density to decrease, while the hardness to markedly grow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levashov, E.A., Shtansky, D.V., Senatulin, B.R., and Rossy, F., New Bicompatible Materials TiC0.5-ZrO2, TiC0.5-CaO, Tsvetn. Metall., 2004, no. 2, pp. 85–90.

  2. Shtansky, D.V., Levashov, E.A., Glushankova, N.A., et al., Structure and Properties of CaO-and ZrO2-Doped TiCxNy Coatings for Biomedical Applications, Surf. Coat. Technol., 2004, vol. 182, pp. 101–111.

    Article  CAS  Google Scholar 

  3. Shtansky, D.V., Levashov, E.A., Glushankova, N.A., et al., New Hard Biocompatible Thin-Film Materials in Ti-Ca-C-N-O and Ti-Zr-C-N-O Systems for Medicine, Fiz. Met. Metalloved., 2004, no. 5, pp. 34–43.

  4. Shtansky, D.V., Glushankova, N.A., Sheveiko A.N., et al., Design, Characterization and Testing of TiC-Based Multicomponent Coatings for Load-Bearing Biomedical Applications, Biomaterials, 2005, vol. 26, pp. 2909–2924.

    Article  CAS  Google Scholar 

  5. Shtansky, D.V., Glushankova, N.A., Bashkova, I.A., et al., Multifunctional Ti-(Ca,Zr)-(C,N,O,P) Films for Load-Bearing Implants, Biomaterials, 2006, vol. 27, pp. 3519–3531.

    CAS  Google Scholar 

  6. Martinez, E., Wiklund, U., Esteve, J., Montala, F., and Careras, L.L., Wear, 2002, vol. 253, pp. 1182–1198.

    Article  CAS  Google Scholar 

  7. Levashov, E.A., Rogachev, A.S., Yukhvid, V.I., and Borovinskaya, I.P., Fiziko-khimicheskie i technologicheskie osnovy samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Physicochemical and Technological Backgrounds of Self-Propagating High-Temperature Synthesis), Moscow: Binom, 1999.

    Google Scholar 

  8. Mossino, P., Some Aspects of Self-Propagating High-Temperature Synthesis, Ceram. Int., 2004, vol. 30, pp. 311–332.

    Article  CAS  Google Scholar 

  9. Kharatyan, S.L., Reactive Diffusion in SHS Processes, Self-Propagating High-Temperature Synthesis: Theory and Practice, Sytschev, A.E., Ed., Chernogolovka: Territoriya, 2001, pp. 157–215.

    Google Scholar 

  10. Puszynski, J.A., Int. J. SHS, 2001, vol. 10, no. 3, pp. 265–293.

    CAS  Google Scholar 

  11. Tret’yakov, V.I., Osnovy metallovedeniya i technologii proizvodstva spechennykh tverdykh splavov (Fundamentals of Metal Science and Processing Engineering for Sintered Hard Alloys), Moscow: Metallurgy, 1976.

    Google Scholar 

  12. Merzhanov, A.G., Tverdoplamennoe gorenie (Solid-Flame Combustion), Chernogolovka: Izd. ISMAN, 2000.

    Google Scholar 

  13. Levashov, E.A., Senatulin, B.R., Leyland, A., and Matthews, A., Izv. Vyssh. Uchebn. Zaved.: Tsvetn. Metall., 2006, no. 1, p. 66.

  14. Merzhanov, A.G., Combustion of Condensed Systems: A New Line of Research, Vestn. Akad. Nauk SSSR, 1979, no. 8, pp. 10–18.

  15. Martirosyan, A.N., Dolukhanyan, C.K., and Merzhanov, A.G., Experimental Observation of Non-Uniqueness of Steady Combustion Modes in Systems with Parallel Reactions, Fiz. Goreniya Vzryva, 1983, no. 6, pp. 22–24.

  16. Samsonov, G.V. and Upakhdaya, G.Sh., Fizicheskoe materialovedenie karbidov (Physical Materials Science of Carbides), Kiev: Naukova Dumka, 1974, p. 126.

    Google Scholar 

  17. Holleck, H., Binäre und ternäre Carbid-und Nitridsysteme der übergangsmetalle, Berlin: Borntraeger, 1984. Translated under the title Dvoinye i troinye nitridnye sistemy, Moscow: Metallurgiya, 1988, p. 131.

    Google Scholar 

  18. Shkiro, V.M., and Borovinskaya, I.P., Capillary Flow of Liquid Metal during Combustion of Ti-C Mixtures. Fiz. Goreniya Vzryva, 1976, no. 6, p. 35.

  19. Kiparisov, S.S., Levinskii, Yu.V., and Petrov, V.M., Karbid titana (Titanium Carbide), Moscow: Metallurgiya, 1989, p. 316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rogachev.

About this article

Cite this article

Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V. et al. Combustion and structure formation in the Ti-Ta-C-Ca3(PO4)2 system. Int. J Self-Propag. High-Temp. Synth. 16, 218–224 (2007). https://doi.org/10.3103/S1061386207040085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386207040085

Keywords

PACS numbers

Navigation