Skip to main content
Log in

Abstract

A novel, economical, and energy-efficient process to produce nanostructured particles of several perovskite oxides, such as ferroelectrics BaTiO3, SrTiO3 and LiNbO3, is described. This process, referred to as carbon combustion synthesis of oxides (CCSO) is a modified SHS process that uses carbon as a fuel instead of a pure metal. In CCSO of nanostructured materials, the exothermic oxidation of carbon nanoparticles (∼5 nm) with a surface area of 80 m2/g generates a thermal reaction wave with temperature of up to 1200°C that propagates through the solid submicron reactant mixture, converting it to the desired complex oxide product. The carbon is not incorporated in the solid product since it is released in a gaseous form (CO2) from the sample. The quenching front method combined with XRD and Raman spectroscopy revealed that crystalline tetragonal BaTiO3 particles formed in the early stage of the combustion, before the temperature reached its maximum. A major difference between the thermal transport processes during CCSO and conventional SHS is the extensive emission of CO2. The release of CO2 enables synthesis of highly porous (up to 70%) powders having a particle size in the range of 60–80 nm with a surface area of up to 12.4 m2/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moulson, A.J. and Herbert, J.M., Electroceramics, Materials, Properties, and Applications, London: Chapman and Hall, London, 1990.

    Google Scholar 

  2. Smyth, D.M., The Defect Chemistry of Metal Oxides, New York-Oxford: Oxford University Press, 2000, p. 294.

    Google Scholar 

  3. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Oxford University Press, 2001, p. 694.

    Google Scholar 

  4. Alexe, M. and Gruverman, A., Nanoscale Characterization of Ferroelectric Materials: Scanning Probe Microscopy Approach, Berlin: Springer, 2004, p. 282.

    Google Scholar 

  5. Landolt-Börnstein (New Series), Ferroelectrics and Related Substances: Oxides, Group III, vol. 16a, Hellwege, K.H., Ed., Berlin: Springer, 1982, p. 244.

    Google Scholar 

  6. Rae, A., Chu, M., and Ganine, V., Barium Titanate Past, Present and Future, in Dielectric Ceramic Materials, Westerville, OH: American Ceramic Society, 1998.

    Google Scholar 

  7. Jinshu, W., Shuyun, M., and Guohong, W., Photocatalytic Destruction of Nitrogen Monoxide over La3+-and Co-Doped SrTiO3 Powders under Visible Light Irradiation, J. Rare Earths, 2004, vol. 22, no. 5, pp. 591–595.

    Google Scholar 

  8. Lee, S.W., Drwiega, J., Mazyck, D.W., Wu, C.Y., and Sigmund, W., Synthesis and Characterization of Hard Magnetic Composite Photocatalyst: Barium Ferrite/Silica/Titania, Mat. Chem. Phys., 2006, vol. 96, nos. 2–3, pp. 483–488.

    Article  CAS  Google Scholar 

  9. Luo, J. and Maggard, P.A., Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3, Adv. Mater., 2006, vol. 18, no. 4, pp. 514–517.

    Article  CAS  Google Scholar 

  10. Ceramic Materials for Electronics: Processing, Properties and Applications, Buchanan, R.C., Ed., New York: Marcel Dekker, 1986, p. 131.

    Google Scholar 

  11. Nakano, H., Urabe, K., and Ikawa, H., Barium Carbonate Phase on the Surfaces of Barium Titanate Particle and in situ Transmission Electron Microscopy Observation of Its Decomposition, J. Am. Ceram. Soc., 2003, vol. 86, no. 4, pp. 741–743.

    Article  CAS  Google Scholar 

  12. Ma, Y., Vileno, E., Suib, S.L., and Dutta, P.K., Synthesis of Tetragonal BaTiO3 by Microwave Heating and Conventional Heating, Chem. Mater., 1997, vol. 9, pp. 3023–3031.

    Article  CAS  Google Scholar 

  13. Shimooka, H. and Kuwabara, M., Preparation of Dense BaTiO3, Ceramics from Sol-Gel-Derived Monolithic Gels, J. Am. Ceram. Soc., 1995, vol. 78, no. 10, pp. 2849–2852.

    Article  CAS  Google Scholar 

  14. Brinker, C. and Scherer, G., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, n.p.: Academic Press, 1989, p. 908.

  15. Tretyakov, Y.D. and Shlyakhtin, O.A., Recent Progress in Cryochemical Synthesis of Oxide Materials, J. Mater. Chem., 1999, vol. 9, p. 19.

    Article  Google Scholar 

  16. Masters, K., Spray Drying Handbook, London: George Godwin Ltd., 1985, p. 696, 4th ed.

    Google Scholar 

  17. Vivekanandan, R. and Kutty, T.R.N., Characterization of Barium Titanate Fine Powders Formed from Hydrothermal Crystallization, Powder Tech., 1989, vol. 57, pp. 181–192.

    Article  CAS  Google Scholar 

  18. Zhang, M.S., Yin, Z., Chen, A., Zhang, W., and Chen, W., Microstructures and Photoluminescence of Barium Titanate Nanocrystals Synthesized by the Hydrothermal Process, J. Mater. Proc. Techn., 2003, vol. 137, pp. 78–81.

    Article  CAS  Google Scholar 

  19. Clark, I.J., Takeuchi, T., Ohtori, N., and Sinclair, D.C., Hydrothermal Synthesis and Characterization of BaTiO3 Fine Powders: Precursors, Polymorphism and Properties, J. Mater. Chem., 1999, vol. 9, pp. 83–91.

    Article  CAS  Google Scholar 

  20. Pithan, C., Shiratori, Y., Waser, R., Dornseiffer, J., and Haegel, F.H., Preparation, Processing, and Characterization of Nano-Crystalline BaTiO3 Powders and Ceramics Derived from Microemulsion-Mediated Synthesis, J. Am. Ceram. Soc., 2006, vol. 89, no. 9, pp. 2908–2916.

    CAS  Google Scholar 

  21. Martirosyan, K.S. and Luss, D., Carbon Combustion Synthesis of Oxides: Process Demonstration and Features, AIChE J., 2005, vol. 51, no. 10, pp. 2801–2810.

    Article  CAS  Google Scholar 

  22. Martirosyan, K.S. and Luss, D., Carbon Combustion Synthesis of Oxides, US Patent Application US2006/0097419 Al, 2006, pending.

  23. Martirosyan, K.S. and Luss, D., Carbon Combustion Synthesis of Ferrites: Synthesis and Characterization, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 1492–1499.

    Article  CAS  Google Scholar 

  24. Martirosyan, K.S., Chang, L., Rantschler, J., Khizroev, S., Litvinov, D., and Luss, D., Synthesis and Characterization of Cobalt Ferrite Nanoparticles, Magn. Trans. (in press).

  25. Merzhanov, A.G., Problems of Combustion in Chemical Technology and in Metallurgy, Russ. Chem. Rev., 1976, vol. 45, no. 5, pp. 409–420.

    Article  Google Scholar 

  26. Merzhanov, A.G., The Chemistry of Self-propagating High-temperature Synthesis, J. Mater. Chem., 2004, vol. 14, pp. 1779–1786.

    Article  CAS  Google Scholar 

  27. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226.

    Article  CAS  Google Scholar 

  28. Sytschev, A.E. and Merzhanov, A.G., Self-Propagating High-Temperature Synthesis of Nanomaterials, Russ. Chem. Rev., 2004, vol. 73, no. 2, pp. 147–159.

    Article  CAS  Google Scholar 

  29. Hlavacek, V., Combustion Synthesis: A Historical Perspective, Am. Ceram. Soc. Bull., 1991, vol. 70, no. 2, pp. 240–243.

    CAS  Google Scholar 

  30. Puszynski, J.A., Thermochemistry and Kinetics, in Carbide, Nitride and Boride Materials Synthesis and Processing, Weimer, A.W., Ed., London: Chapman and Hall, 1997, p. 183.

    Google Scholar 

  31. Moore, J.J. and Feng, H.J., Combustion Synthesis of Advanced Materials. I. Reaction Parameters, Prog. Mater. Sci., 1995, vol. 39, nos. 4–5, pp. 243–273.

    Article  CAS  Google Scholar 

  32. Rogachev, A.S., Mukasyan, A.S., and Merzhanov, A.G., Structural Transitions in the Gasless Combustion of Titanium-Carbon and Titanium-Boron Systems, Dokl. Phys. Chem., 1987, vol. 297, pp. 1240–1244.

    Google Scholar 

  33. Hedvall, J.A., Solid State Chemistry: Whence, Where and Whither, Amsterdam: Elsevier, 1966, p. 100.

    Google Scholar 

  34. Hutton, J. and Nelmes, R.J., High-Resolution Studies of Cubic Perovskites by Elastic Neutron Diffraction: SrTiO3, KMnF3, RbCaF3 and CsPbCl3, J. Phys. C: Solid State Phys., 1981, vol. 14, pp. 1713–1736.

    Article  CAS  Google Scholar 

  35. Kar, S., Bhatt, R., Bartwal, K.S., and Wadhawan, V.K., Optimisation of Chromium Doping in LiNbO3 Single Crystals, Cryst. Res. Techn., 2004, vol. 39, no. 3, pp. 230–234.

    Article  CAS  Google Scholar 

  36. Arlt, G., Hennings, D., and de-With, G., Dielectric Properties of Fine-Grained Barium Titanate Ceramics, J. Appl. Phys., 1985, vol. 58, no. 4, pp. 1619–1625.

    Article  CAS  Google Scholar 

  37. Komarov, A.V. and Parkin, L.P., New Routes in the Self-Propagating High-Temperature Synthesis of Barium Titanium Oxide, Polyhedron, 1996, vol. 15, no. 8 (5), pp. 1349–1353.

    Article  CAS  Google Scholar 

  38. Martirosyan, K.S., Nawarathna, D., Claycomb, J.R., Miller, J.H., Jr., and Luss, D., Complex Dielectric Behavior during the Formation of BaTiO3 by Combustion Synthesis, J. Phys. D: Appl. Phys., 2006, vol. 39, pp. 3689–3694.

    Article  CAS  Google Scholar 

  39. Laine, N.R., Vastola, F.J., and Walker, P.L., The Importance of Active Surface Area in the Carbon-Oxygen Reaction, J. Phys. Chem., 1963, vol. 67, pp. 2030–2034.

    Article  CAS  Google Scholar 

  40. Smoot, L.D and Smith, P.J., Coal Combustion and Gasification, New York-London: Plenum Press, 1985, p. 443.

    Google Scholar 

  41. Wiliams, A., Pourkashanian, M., Jones, J.M., and Skorupska, N., Combustion and Gasification of Coal, New York: Taylor and Francis, 2000, p. 336.

    Google Scholar 

  42. Laurendeau, N.M., Heterogeneous Kinetics of Coal Char Gasification and Combustion, Prog. Energy Combust. Sci., 1978, vol. 4, pp. 221–270.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Martirosyan, K.S., Iliev, M. & Luss, D. Carbon combustion synthesis of nanostructured perovskites. Int. J Self-Propag. High-Temp. Synth. 16, 36–45 (2007). https://doi.org/10.3103/S1061386207010050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386207010050

Keywords

PACS numbers

Navigation