Skip to main content
Log in

Forecasting PM2.5 Concentration Using Gradient-Boosted Regression Tree with CNN Learning Model

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

Air pollution imposed by particle matter (PM) made it a public health concern and hazard to humans and the environment. Reduced vision, allergic responses, pneumonia, asthma, cardiovascular disorders, lung cancer, and even mortality can result from prolonged exposure to the concentration of air’s small particulate matter. Air quality prediction can offer reliable information for future air pollution status to operate air pollution control effectively and make preventative plans. Tracking, predicting, and regulating emissions is crucial. Controlling PM2.5 is the key for enhancing air quality, and it can be accomplished by forecasting PM2.5 concentrations. This work develops a methodology for forecasting PM2.5 concentrations using a gradient-boosted regression tree with Convolutional Neural Network (CNN) and fuzzy K-nearest neighbour (fuzzy-KNN). The results of the proposed methodology have been comparatively analysed with multiple linear regression, stacked long short-term memory, bidirectional gated recurrent unit, and gradient-boosted regression tree. The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) are evaluated, and it shows that the gradient-boosted regression tree model produces a reduced error with improved accuracy in forecasting air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pope Iii, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., and Thurston, G.D., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 2002, vol. 287, no. 9, pp. 1132–1141.

    Article  Google Scholar 

  2. Baker, K.R. and Foley, K.M., A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM2. 5, Atmos. Environ., 2011, vol. 45, no. 22, pp. 3758–3767.

    Article  Google Scholar 

  3. Zhang, Y., He, Y., and Zhu, J., Research on forecasting problem based on multiple linear regression model PM2. 5, J. Anhui Sci. Technol. Univ., 2016, vol. 30, no. 3, pp. 92–97.

    Google Scholar 

  4. Wang, Z. and Long, Z., Pm2. 5 prediction based on neural network, in 2018 11th International Conference on Intelligent Computation Technology and Automation (ICICTA), IEEE, 2018, pp. 44–47.

  5. Elangasinghe, M.A., Singhal, N., Dirks, K.N., Salmond, J.A., and Samarasinghe, S., Complex time series analysis of PM10 and PM2. 5 for a coastal site using artificial neural network modelling and k-means clustering, Atmos. Environ., 2014, vol. 94, pp. 106–116.

    Article  Google Scholar 

  6. Ordieres, J.B., Vergara, E.P., Capuz, R.S., and Salazar, R.E., Neural network prediction model for fine particulate matter (PM2. 5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua), Environ. Modell. Software, 2005, vol. 20, no. 5, pp. 547–559.

    Article  Google Scholar 

  7. Wang, J., Li, J., Wang, X., Wang, J., and Huang, M., Air quality prediction using CT-LSTM, Neural Comput. Appl., 2021, vol. 33, no. 10, pp. 4779–4792.

    Article  Google Scholar 

  8. Mokhtari, I., Bechkit, W., Rivano, H., and Yaici, M.R., Uncertainty-aware deep learning architectures for highly dynamic air quality prediction, IEEE Access, 2021, vol. 9, pp. 14765–14778.

    Article  Google Scholar 

  9. Nguyen, M.H., Le Nguyen, P., Nguyen, K., Nguyen, T.H., and Ji, Y., PM2. 5 prediction using genetic algorithm-based feature selection and encoder-decoder model, IEEE Access, 2021, vol. 9, pp. 57338–57350.

    Article  Google Scholar 

  10. Xing, H., Wang, G., Liu, C., and Suo, M., PM2. 5 concentration modeling and prediction by using temperature-based deep belief network, Neural Networks, 2021, vol. 133, pp. 157–165.

    Article  Google Scholar 

  11. Zheng, G., Liu, H., Yu, C., Li, Y., and Cao, Z., A new PM2. 5 forecasting model based on data preprocessing, reinforcement learning and gated recurrent unit network, Atmos. Pollut.Res., 2022, 101475.

  12. Hähnel, P., Mareček, J., Monteil, J., and O’Donncha, F., Using deep learning to extend the range of air pollution monitoring and forecasting, J. Comput. Phys., 2020, vol. 408, 109278. https://doi.org/10.1016/j.jcp.2020.109278

    Article  MathSciNet  Google Scholar 

  13. Harishkumar, K.S., Yogesh, K.M., and Gad, I., Forecasting air pollution particulate matter (PM2. 5) using machine learning regression models, Proc. Comput. Sci., 2020, vol. 171, pp. 2057–2066. https://doi.org/10.1016/j.procs.2020.04.221

    Article  Google Scholar 

  14. Li, T., Hua, M., and Wu, X.U., A hybrid CNN-LSTM model for forecasting particulate matter (PM2. 5), IEEE Access, 2020, vol. 8, pp. 26933–26940. https://doi.org/10.1109/ACCESS.2020.2971348

    Article  Google Scholar 

  15. Qin, D., Yu, J., Zou, G., Yong, R., Zhao, Q., and Zhang, B., A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration, IEEE Access, 2019, vol. 7, pp. 20050–20059. https://doi.org/10.1109/ACCESS.2019.2897028

    Article  Google Scholar 

  16. Soh, P.W., Chang, J.W., and Huang, J.W., Adaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relations, IEEE Access, 2018, vol. 6, pp. 38186–38199. https://doi.org/10.1109/ACCESS.2018.2849820

    Article  Google Scholar 

  17. Tao, Q., Liu, F., Li, Y., and Sidorov, D., Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU, IEEE Access, 2019, vol. 7, pp. 76690–76698. https://doi.org/10.1109/ACCESS.2019.2921578

    Article  Google Scholar 

  18. Wang, Z., Zheng, W., Song, C., Zhang, Z., Lian, J., Yue, S., and Ji, S., Air quality measurement based on double-channel convolutional neural network ensemble learning, IEEE Access, 2019, vol. 7, pp. 145067–145081. https://doi.org/10.1109/ACCESS.2019.2945805

    Article  Google Scholar 

  19. Chen, H., Guan, M., and Li, H., Air quality prediction based on integrated dual LSTM model, IEEE Access, 2021, vol. 9, pp. 93285–93297. https://doi.org/10.1109/ACCESS.2021.3093430

    Article  Google Scholar 

  20. Huang, Y., Xiang, Y., Zhao, R., and Cheng, Z., Air quality prediction using improved PSO-BP neural network, IEEE Access, 2020, vol. 8, pp. 99346–99353. https://doi.org/10.1109/ACCESS.2020.2998145

    Article  Google Scholar 

  21. Chen, J., Chen, K., Ding, C., Wang, G., Liu, Q., and Liu, X., An adaptive Kalman filtering approach to sensing and predicting air quality index values, IEEE Access, 2020, vol. 8, pp. 4265–4272. https://doi.org/10.1109/ACCESS.2019.2963416

    Article  Google Scholar 

  22. Ameer, S., Shah, M. A., Khan, A., Song, H., Maple, C., Islam, S.U., and Asghar, M.N., Comparative analysis of machine learning techniques for predicting air quality in smart cities, IEEE Access, 2019, vol. 7, pp. 128325–128338. https://doi.org/10.1109/ACCESS.2019.2925082

    Article  Google Scholar 

  23. Du, S., Li, T., Yang, Y., and Horng, S.J., Deep air quality forecasting using hybrid deep learning framework, IEEE Trans. Knowl. Data Eng., 2019, vol. 33, no. 6, pp. 2412–2424. https://doi.org/10.1109/TKDE.2019.2954510

    Article  Google Scholar 

  24. Sharma, E., Deo, R.C., Prasad, R., Parisi, A.V., and Raj, N., Deep air quality forecasts: suspended particulate matter modeling with convolutional neural and long short-term memory networks, IEEE Access, 2020, vol. 8, pp. 209503–209516. https://doi.org/10.1109/ACCESS.2020.3039002

    Article  Google Scholar 

  25. Zhang, L., Li, D., and Guo, Q., Deep learning from spatio-temporal data using orthogonal regularizaion residual cnn for air prediction, IEEE Access, 2020, vol. 8, pp. 66037–66047. https://doi.org/10.1109/ACCESS.2020.2985657

    Article  Google Scholar 

  26. Wei, X., Wang, X., Zhu, T., and Gong, Z., Fusion prediction model of atmospheric pollutant based on self-organized feature, IEEE Access, 2021, vol. 9, pp. 8110–8120. https://doi.org/10.1109/ACCESS.2021.3049454

    Article  Google Scholar 

  27. Hu, K., Rahman, A., Bhrugubanda, H., and Sivaraman, V., HazeEst: Machine learning based metropolitan air pollution estimation from fixed and mobile sensors, IEEE Sens. J., 2017, vol. 17, no. 11, pp. 3517–3525. https://doi.org/10.1109/JSEN.2017.2690975

    Article  Google Scholar 

  28. Heydari, A., Majidi Nezhad, M., Astiaso Garcia, D., Keynia, F., and De Santoli, L., Air pollution forecasting application based on deep learning model and optimization algorithm, Clean Technol. Environ. Policy, 2022, vol. 24, no. 2, pp. 607–621. https://doi.org/10.1007/s10098-021-02080-5

    Article  Google Scholar 

  29. Mahajan, S., Liu, H.M., Tsai, T.C., and Chen, L.J., Improving the accuracy and efficiency of PM2. 5 forecast service using cluster-based hybrid neural network model, IEEE Access, 2018, vol. 6, pp. 19193–19204. https://doi.org/10.1109/ACCESS.2018.2820164

    Article  Google Scholar 

  30. Rahman, M.M., Paul, K.C., Hossain, M.A., Ali, G.M.N., Rahman, M.S., and Thill, J.C., Machine learning on the COVID-19 pandemic, human mobility, and air quality: A review, IEEE Access, 2021, vol. 9, pp. 72420–72450. https://doi.org/10.1109/ACCESS.2021.3079121

    Article  Google Scholar 

  31. Xu, X. and Yoneda, M., Multitask air-quality prediction based on LSTM-autoencoder model, IEEE Trans. Cybern., 2019, vol. 51, no. 5, pp. 2577–2586. https://doi.org/10.1109/TCYB.2019.2945999

    Article  Google Scholar 

  32. Neto, P.S.D.M., Firmino, P.R.A., Siqueira, H., Tadano, Y.D.S., Alves, T.A., De Oliveira, J.F., and Madeiro, F., Neural-based ensembles for particulate matter forecasting, IEEE Access, 2021, vol. 9, pp. 14470–14490. https://doi.org/10.1109/ACCESS.2021.3050437

    Article  Google Scholar 

  33. Kristiani, E., Kuo, T.Y., Yang, C.T., Pai, K.C., Huang, C.Y., and Nguyen, K.L.P., PM2. 5 Forecasting model using a combination of deep learning and statistical feature selection, IEEE Access, 2021, vol. 9, pp. 68573–68582. https://doi.org/10.1109/ACCESS.2021.3077574

    Article  Google Scholar 

  34. Nguyen, M.H., Le Nguyen, P., Nguyen, K., Nguyen, T.H., and Ji, Y., PM2. 5 prediction using genetic algorithm-based feature selection and encoder-decoder model, IEEE Access, 2021, vol. 9, pp. 57338–57350. https://doi.org/10.1109/ACCESS.2021.3072280

    Article  Google Scholar 

  35. Caraka, R.E., Chen, R.C., Toharudin, T., Pardamean, B., Yasin, H., and Wu, S.H., Prediction of status particulate matter 2.5 using state Markov chain stochastic process and HYBRID VAR-NN-PSO, IEEE Access, 2019, vol. 7, pp. 161654–161665. https://doi.org/10.1109/ACCESS.2019.2950439

    Article  Google Scholar 

  36. Chang, S.W., Chang, C.L., Li, L.T., and Liao, S.W., Reinforcement learning for improving the accuracy of pm2. 5 pollution forecast under the neural network framework, IEEE Access, 2019, vol. 8, pp. 9864–9874. https://doi.org/10.1109/ACCESS.2019.2932413

    Article  Google Scholar 

  37. Song, S., Lam, J. C., Han, Y., and Li, V.O., ResNet-LSTM for real-time PM 2.5 and PM10 estimation using sequential smartphone images, IEEE Access, 2020, vol. 8, pp. 220069–220082, https://doi.org/10.1109/ACCESS.2020.3042278

    Article  Google Scholar 

  38. Yang, Y., Mei, G., and Izzo, S., Revealing influence of meteorological conditions on air quality prediction using explainable deep learning, IEEE Access, 2022, vol. 10, pp. 50755–50773. https://doi.org/10.1109/ACCESS.2022.3173734

    Article  Google Scholar 

  39. Qiao, W., Tian, W., Tian, Y., Yang, Q., Wang, Y., and Zhang, J., The forecasting of PM2. 5 using a hybrid model based on wavelet transform and an improved deep learning algorithm, IEEE Access, 2019, vol. 7, pp. 142814–142825. https://doi.org/10.1109/ACCESS.2019.2944755

    Article  Google Scholar 

  40. Bhatti, U.A., Yan, Y., Zhou, M., Ali, S., Hussain, A., Qingsong, H., … and Yuan, L., Time series analysis and forecasting of air pollution particulate matter (PM 2.5): an SARIMA and factor analysis approach, IEEE Access, 2021, vol. 9, pp. 41019–41031. https://doi.org/10.1109/ACCESS.2021.3060744

    Article  Google Scholar 

  41. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning, Nature, 2015, vol. 521, no. 7553, pp. 436–444.

    Article  Google Scholar 

  42. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 1998, vol. 86, no. 11, pp. 2278–2324.

    Article  Google Scholar 

  43. Cleeremans, A., Servan-Schreiber, D., and McClelland, J.L., Finite state automata and simple recurrent networks, Neural Comput., 1989, vol. 1, no. 3, pp. 372–381.

    Article  Google Scholar 

  44. Tao, Q., Liu, F., Li, Y., and Sidorov, D., Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU, IEEE access, 2019, vol. 7, pp. 76690–76698. doi: 10.1109 /ACCESS. 2019.2921578

  45. Hao, X., Hu, X., Liu, T., Wang, C., and Wang, L., Estimating urban PM2. 5 concentration: An analysis on the nonlinear effects of explanatory variables based on gradient boosted regression tree, Urban Clim., 2022, vol. 44, 101172. https://doi.org/10.1016/j.uclim.2022.101172

    Article  Google Scholar 

  46. Ruby, A.U., Chaithanya, B.N., Swasthika Jain T.J., Darandale, S., Kerenalli, S., and Patil, R., An effective feature descriptor method to classify plant leaf diseases using eXtreme Gradient Boost, J. Integr. Sci. Technol., 2022, vol. 10, no. 1, pp. 43–52.

    Google Scholar 

  47. https://archive.ics.uci.edu/ml/datasets/Beijing+multi-Site+Air-Quality+Data.

  48. Das, K. and Das, S., Energy-efficient cloud-integrated sensor network model based on data forecasting through ARIMA, Int. J. e-Collab. (IJeC), 2022, vol. 18, no. 1, pp. 1–17.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Data collection and experimental works: A.Usha Ruby and J.George Chellin Chandran

Writing, discussion, analysis: Prasannavenkatesan Theerthagiri, Renuka Patil, Chaithanya B.N., and Swasthika Jain T.J.

Corresponding author

Correspondence to Prasannavenkatesan Theerthagiri.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usha Ruby, A., Chandran, J.G., Theerthagiri, P. et al. Forecasting PM2.5 Concentration Using Gradient-Boosted Regression Tree with CNN Learning Model. Opt. Mem. Neural Networks 33, 86–96 (2024). https://doi.org/10.3103/S1060992X24010107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X24010107

Keywords:

Navigation