Skip to main content
Log in

Application of Convolutional Neural Networks for Creation of Photoluminescent Carbon Nanosensor for Heavy Metals Detection

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

The paper presents results of the use of convolutional neural networks for the development of a multimodal photoluminescent nanosensor based on carbon dots (CD) for simultaneous measurement of the number of parameters of multicomponent liquid media. It is shown that using 2D convolutional neural networks allows to determine the concentrations of heavy metal cations Cu2+, Ni2+, Cr3+, \({\text{NO}}_{3}^{ - }\) anions and pH value of aqueous solutions with a mean absolute error of 0.29, 0.96, 0.22, 1.82 and 0.05 mM, respectively. The resulting errors satisfy the needs of monitoring the composition of technological and industrial waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Potash, M.E., Barocas, S., D’Amour, A., and Lum, K., Algorithmic fairness: Choices, assumptions, and definitions, Annu. Rev. Stat. Appl., 2021, vol. 8, no. 1, pp. 141–163. https://doi.org/10.1146/annurev-statistics-042720-125902

    Article  MathSciNet  Google Scholar 

  2. Géron, A., Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, Sebastopol: O’Reilly, 2019.

    Google Scholar 

  3. Ayodele, T.O., Types of Machine Learning Algorithms, Portsmouth: InTech, 2010.

    Google Scholar 

  4. Jermyn, M., Desroches, J., Mercier, J., Tremblay, M.-A., St-Arnaud, K., Guiot, M.-C., Petrecca, K., and Leblond, F., Neural networks improve brain cancer detection with Raman spectroscopy in the presence of operating room light artifacts, J. Biomed. Opt., 2016, vol. 21, no. 9, p. 094002. https://doi.org/10.1117/1.jbo.21.9.094002

    Article  Google Scholar 

  5. Gniadecka, M., Philipsen, P.A., Wessel, S., Gniadecki, R., Wulf, H.C., Sigurdsson, S., Nielsen, O.F., Christensen, D.H., Hercogova, J., Rossen, K., Thomsen, H.K., and Hansen, L.K., Melanoma diagnosis by raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue, JID, 2004, vol. 122, no. 2, pp. 443–449. https://doi.org/10.1046/j.0022-202x.2004.22208.x

    Article  Google Scholar 

  6. Takahashi, M.B., Leme, J., Caricati, C.P., Tonso, A., Fernández Núñez, E.G., and Rocha, J.C., Artificial neural network associated to UV/Vis spectroscopy for monitoring biore-actions in biopharmaceutical processes, Bioprocess Biosyst. Eng., 2015, vol. 38, no. 6, pp. 1045–1054. https://doi.org/10.1007/s00449-014-1346-7

    Article  Google Scholar 

  7. Dolenko, T.A., Burikov, S.A., Vervald, A.M., Vlasov, I.I., Dolenko, S.A., Laptinskiy, K.A., Rosenholm, J.M., and Shenderova, O.A., Optical imaging of fluorescent carbon biomarkers using artificial neural networks, J. Biomed. Opt., 2014, vol. 19, no. 11, pp. 117007. https://doi.org/10.1117/1.jbo.19.11.117007

    Article  Google Scholar 

  8. Laptinskiy, K., Burikov, S., Dolenko, S., Efitorov, A., Sarmanova, O., Shenderova, O., Vlasov, I., and Dolenko, T., Monitoring of nanodiamonds in human urine using artificial neural networks, Phys. Status Solidi A, 2016, vol. 213, no. 10, pp. 2614–2622. https://doi.org/10.1002/pssa.201600178

    Article  Google Scholar 

  9. Dolenko, T., Efitorov, A., Sarmanova, O., Kotova, O., Isaev, I., Laptinskiy, K., Dolenko, S., and Burikov, S., Application of wavelet neural networks for monitoring of extraction of carbon multifunctional medical nanoagents from the body, Procedia Comput. Sci., 2018, vol. 145, pp. 177–183. https://doi.org/10.1016/j.procs.2018.11.036

    Article  Google Scholar 

  10. Sarmanova, O.E., Burikov, S.A., Dolenko, S.A., Isaev, I.V., Laptinskiy, K.A., Prabhakar, N., Karaman, D.S., Rosenholm, J.M., Shenderova, O.A., and Dolenko, T.A., A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks, Nanomedine: NBM, 2018, vol. 14, no. 4, pp. 1371–1380. https://doi.org/10.1016/j.nano.2018.03.009

    Article  Google Scholar 

  11. Barati, A., Shamsipur, M., and Abdollahi, H., Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH, Anal. Chim. Acta, 2016, vol. 931, pp. 25–33. https://doi.org/10.1016/j.aca.2016.05.011

    Article  Google Scholar 

  12. Munro, T., Liu, L., Glorieux, C., and Ban, H., CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction, J. Appl. Phys., 2016, vol. 119, no. 21, p. 214903. https://doi.org/10.1063/1.4953223

    Article  Google Scholar 

  13. Vervald, A.M., Lachko, A.V., Kudryavtsev, O.S., Shenderova, O.A., Kuznetsov, S.V., Vlasov, I.I., and Dolenko, T.A., Surface photoluminescence of oxidized nanodiamonds: Influence of environment pH, J. Phys. Chem. C, 2021, vol. 125, no. 33, pp. 18247–18258. https://doi.org/10.1021/acs.jpcc.1c03331

    Article  Google Scholar 

  14. Feng, X., Ashley, J., Zhou, T., and Sun, Y., Fluorometric determination of doxycycline based on the use of carbon quantum dots incorporated into a molecularly imprinted polymer, Microchim. Acta, 2018, vol. 185, no. 11. https://doi.org/10.1007/s00604-018-2999-8

  15. Sarmanova, O.E., Laptinskiy, K.A., Khmeleva, M.Yu., Burikov, S.A., Dolenko, S.A., Tomskaya, A.E., and Dolenko, T.A., Development of the fluorescent carbon nanosensor for pH and temperature of liquid media with artificial neural networks, Spectrochim. Acta, Part A, 2021, vol. 258, p. 119861. https://doi.org/10.1016/j.saa.2021.119861

    Article  Google Scholar 

  16. Dolina, L.F., Modern Equipment and Technologies for Wastewater Treatment from Heavy Metal Salts, Dnepropetrovsk: Continent, 2008.

    Google Scholar 

  17. Akbal, F. and Camcı, S., Treatment of metal plating wastewater by electrocoagulation, Environ. Prog. Sustainable Energy, 2011, vol. 31, no. 3, pp. 340–350. https://doi.org/10.1002/ep.10546

    Article  Google Scholar 

  18. Haykin, S.S., Horton, M.J., Dworkin, A., Mars, D., Disanno, S., and Dulles, G., Neural Networks and Learning Machines, New Jersey: Pearson, 2009.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-12-00138, https://rscf.ru/en/project/22-12-00138/. Some of the experimental results used in this work were obtained using a FTIR spectrometer purchased under the Development Program of Moscow State University (Agreement no. 65, 04.10.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Chugreeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugreeva, G.N., Sarmanova, O.E., Laptinskiy, K.A. et al. Application of Convolutional Neural Networks for Creation of Photoluminescent Carbon Nanosensor for Heavy Metals Detection. Opt. Mem. Neural Networks 32 (Suppl 2), S244–S251 (2023). https://doi.org/10.3103/S1060992X23060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X23060036

Keywords:

Navigation