Skip to main content
Log in

Poincare Beams in Tight Focus

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

The family of Poincare beams has three characteristics including two real-valued angular characteristics, which descibe a concrete polarisation state on the Poincare sphere and a third integer characteristic l determining the beam singularity order. It was theoretically and numerically shown that at l = 2, an energy backflow is generated near the optical axis. It was revealed that at certain Poincare beams characteristics, the energy flow revolves around the optical axis because of spin-orbital conversion. It was also demonstrated that a radial optical Hall phenomenon took place in the compact focus of Poincare beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A., Experimental quantum teleportation, Philos. Trans. R. Soc., A, 1998, vol. 356, pp. 1733–1737. https://doi.org/10.1098/rsta.1998.0245

  2. Fickler, R., Campbell, G., Buchler, B., Lam, P.K., and Zeilinger, A., Quantum entanglement of angular momentum states with quantum numbers up to 10,010, Proc. Natl. Acad. Sci., 2016, vol. 113, no. 48, pp. 13642–13647. https://doi.org/10.1073/pnas.1616889113

    Article  Google Scholar 

  3. Beckley, A.M., Brown, T.G., and Alonso, M.A., Full Poincaré beams, Opt. Express, 2010, vol. 18, no. 10, pp. 10777–10785. https://doi.org/10.1364/OE.18.010777

    Article  Google Scholar 

  4. Chen, S., Zhou, X., Liu, Y., Ling, X., Luo, H., and Wen, S., Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere, Opt. Lett., 2014, vol. 39, no. 18, pp. 5274–5276. https://doi.org/10.1364/OL.39.005274

    Article  Google Scholar 

  5. Kotlyar, V.V., Kovalev, A.A., and Zaitsev, V.D., Inhomogeneously polarized light fields: polarization singularity indices derived by analogy with the topological charge, Comput. Opt., 2022, vol. 46, no. 5, pp. 671–681. https://doi.org/10.18287/2412-6179-CO-1126

    Article  Google Scholar 

  6. Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photonics, 2009, vol. 1, no. 1, pp. 1–57. https://doi.org/10.1364/AOP.1.000001

    Article  Google Scholar 

  7. Kotlyar, V.V., Kovalev, A.A., and Nalimov, A.G., Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy, Opt. Lett., 2018, vol. 43, no. 12, pp. 2921–2924. https://doi.org/10.1364/OL.43.002921

    Article  Google Scholar 

  8. Kotlyar, V.V., Stafeev, S.S., and Kovalev, A.A., Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area, Opt. Express, 2019, vol. 27, no. 12, pp. 16689–16702. https://doi.org/10.1364/OE.27.016689

    Article  Google Scholar 

  9. Leyder, C., Romanelli, M., Karr, J.P., Giacobino, E., Liew, T.C.H., Glazov, M.M., Kavokin, A.V., Malpuech, G., and Bramati, A., Observation of the optical spin Hall effect, Nat. Phys., 2007, vol. 3, pp. 628–631. https://doi.org/10.1038/nphys676

    Article  Google Scholar 

  10. Zhang, J., Zhou, X.-X., Ling, X.-H., Chen, S.-Z., Luo, H.-L., and Wen, S.-C., Orbit-orbit interaction and photonic orbital Hall effect in reflection of a light beam, Chin. Phys. B, 2014, vol. 23, no. 6, art. no. 064215. https://doi.org/10.1088/1674-1056/23/6/064215

    Article  Google Scholar 

  11. Yin, X., Ye, Z., Rho, J., Wang, Y., and Zhang, X., Photonic spin Hall effect at metasurfaces, Science, 2013, vol. 339, no. 6126, pp. 1405–1407. https://doi.org/10.1126/science.1231758

    Article  Google Scholar 

  12. Nath Baitha, M. and Kim, K., All angle polarization-independent photonic spin Hall effect, Opt. Laser Technol., 2022, vol. 156, art. no. 108458. https://doi.org/10.1016/j.optlastec.2022.108458

    Article  Google Scholar 

  13. Li, S.-M. and Chen, J., Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle, Appl. Phys. Lett., 2012, vol. 100, art. no. 071109. https://doi.org/10.1063/1.3687186

    Article  Google Scholar 

  14. Roy, B., Ghosh, N., Banerjee, A., Gupta, S.D., and Roy, S., Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap, N. J. Phys., 2014, vol. 16, art. no. 083037. https://doi.org/10.1088/1367-2630/16/8/083037

    Article  Google Scholar 

  15. Kumar, R.N., Yatish; Gupta, S.D., Ghosh, N., and Banerjee, A., Probing the rotational spin-Hall effect in a structured Gaussian beam, Phys. Rev. A, 2022, vol. 105, no. 2, art. no. 023503. https://doi.org/10.1103/PhysRevA.105.023503

    Article  Google Scholar 

  16. He, Y., Xie, Z., Yang, B., Chen, X., Liu, J., Ye, H., Zhou, X., Li, Y., Chen, S., and Fan, D., Controllable photonic spin Hall effect with phase function construction, Photonics Res., 2020, vol. 8, no. 6, pp. 963–971. https://doi.org/10.1364/PRJ.388838

    Article  Google Scholar 

  17. Fu, S., Guo, C., Liu, G., Li, Y., Yin, H., Li, Z., and Chen, Z., Spin-orbit optical Hall effect, Phys. Rev. Lett., 2019, vol. 123, no. 24, art. no. 243904. https://doi.org/10.1103/PhysRevLett.123.243904

    Article  Google Scholar 

  18. Ling, X., Zhou, X., Huang, K., Liu, Y., Qiu, C.-W., Luo, H., and Wen, S., Recent advances in the spin Hall effect of light, Rep. Prog. Phys., 2017, vol. 80, no. 6, art. no. 066401. https://doi.org/10.1088/1361-6633/aa5397

    Article  Google Scholar 

  19. Ling, X., Yi, X., Zhou, X., Liu, Y., Shu, W., Luo, H., and Wen, S., Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect, Appl. Phys. Lett., 2014, vol. 105, art. no. 151101. https://doi.org/10.1063/1.4898190

    Article  Google Scholar 

  20. Kotlyar, V.V., Kovalev, A.A., Stafeev, S.S., and Zaitsev, V.D., Index of the polarization singularity of Poincare beams, Bull. Russ. Acad. Sci. Phys., 2022, vol. 86, pp. 1158–1163. https://doi.org/10.3103/S1062873822100112

    Book  Google Scholar 

  21. Borges, C.V.S., Hor-Meyll, M., Huguenin, J.A.O., and Khoury, A.Z., Bell-like inequality for the spin-orbit separability of a laser beam, Phys. Rev. A, 2010, vol. 82, no. 3, art. no. 033833. https://doi.org/10.1103/PhysRevA.82.033833

    Article  Google Scholar 

  22. Otte, E., Rosales-Guzmán, C., Ndagano, B., Denz, C., and Forbes, A., Entanglement beating in free space through spin–orbit coupling, Light Sci. Appl., 2018, vol. 7, art. no. 18009. https://doi.org/10.1038/lsa.2018.9

    Article  Google Scholar 

  23. McLaren, M., Konrad, T., and Forbes, A., Measuring the nonseparability of vector vortex beams, Phys. Rev. A, 2015, vol. 92, no. 2, art. no. 023833. https://doi.org/10.1103/PhysRevA.92.023833

    Article  Google Scholar 

  24. Volyar, A.V., Shvedov, V.G., and Fadeeva, T.A., Structure of a nonparaxial Gaussian beam near the focus: III stability, eigenmodes, and vortices, Opt. Spectra, 2001, vol. 91, pp. 235–245. https://doi.org/10.1134/1.1397845

    Article  Google Scholar 

  25. Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system, Proc. R. Soc. A Math. Phys. Eng. Sci., 1959, vol. 253, no. 1274, pp. 358–379. https://doi.org/10.1098/rspa.1959.0200

  26. Bliokh, K.Y., Ostrovskaya, E.A., Alonso, M.A., Rodríguez-Herrera, O.G., Lara, D., Dainty, C., Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems, Opt. Express, 2011, vol. 19, no. 27, pp. 26132–26149. https://doi.org/10.1364/OE.19.026132

    Article  Google Scholar 

  27. Bliokh, K.Y., Bekshaev, A.Y., and Nori, F., Extraordinary momentum and spin in evanescent waves, Nat. Commun., 2014, vol. 5, art. no. 3300. https://doi.org/10.1038/ncomms4300

    Article  Google Scholar 

  28. Kazanskiy, N.L. and Skidanov, R.V., Technological line for creation and research of diffractive optical elements, Proc. SPIE, 2019, vol. 11146, art. no. 111460W. https://doi.org/10.1117/12.2527274

  29. Kazanskiy, N.L., Research and education center of diffractive optics, Proc. SPIE, 2012, vol. 8410, art. no. 84100R. https://doi.org/10.1117/12.923233

  30. Kozlova, E.S., Kotlyar, V.V., Stafeev, S.S., and Fomchenkov, S.A. Fresnel Zone Plate in Thin Aluminum Film, Photonics and Electromagnetics Research Symposium – Spring (PIERS-Spring), Rome, Italy, 2019, pp. 4333–4338. https://doi.org/10.1109/PIERS-Spring46901.2019.9017357

  31. Kozlova, E., Stafeev, S., Podlipnov, V., Fomchenkov, S., and Kotlyar, V., Theoretical and experimental study of spiral zone plates in aluminum thin film, 2021 International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 2021, pp. 1–4. https://doi.org/10.1109/ITNT52450.2021.9649231

  32. Kotlyar, V.V., Stafeev, S.S., O’Faolain, L., and Kotlyar, M.V., High numerical aperture metalens for the formation of energy backflow, Comput. Opt., 2020, vol. 44, no. 5, pp. 691–698. https://doi.org/10.18287/2412-6179-CO-742

    Article  Google Scholar 

  33. Kotlyar, V.V., Stafeev, S.S., Nalimov, A.G., Kovalev, A.A., and Porfirev, A.P., Experimental investigation of the energy backflow in the tight focal spot, Comput. Opt., 2020, vol. 44, no. 6, pp. 863–870. https://doi.org/10.18287/2412-6179-CO-763

    Article  Google Scholar 

  34. Kozlova, E., Stafeev, S., Fomchenkov, S., Podlipnov, V., Savelyeva, A., and Kotlyar, V., Measuring of transverse energy flows in a focus of an aluminum lens, Photonics, 2022, vol. 9, no. 8, art. no. 592. https://doi.org/10.3390/photonics9080592

    Article  Google Scholar 

  35. Kotlyar, V., Kovalev, A., Kozlova, E., Savelyeva, A., and Stafeev, S., Geometric progression of optical vortices, Photonics, 2022, vol. 9, no. 6, art. no. 407. https://doi.org/10.3390/photonics9060407

    Article  Google Scholar 

  36. Kotlyar, V.V., Kovalev, A.A., Kozlova, E.S., Savelyeva, A.A., and Stafeev, S.S., New type of vortex laser beams: Squared Laguerre-Gaussian beam, Optik, vol. 270, art. no. 169916. https://doi.org/10.1016/j.ijleo.2022.169916

  37. Kozlova, E.S., Stafeev, S.S., Fomchenkov, S.A., Podlipnov, V.V., and Kotlyar, V.V., Transverse intensity at the tight focus of a second-order cylindrical vector beam, Comput. Opt., 2021, vol. 45, no. 2, pp. 165–171. https://doi.org/10.18287/2412-6179-CO-835

    Article  Google Scholar 

  38. Kozlova, E., Stafeev, S., and Kotlyar, V., Investigation of the influence of an aluminum cantilever on the polarization of a light field, 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 2022, pp. 1–4. https://doi.org/10.1109/ITNT55410.2022.9848672

  39. Nalimov, A. and Kotlyar, V., Ultra-thin, short-focus, and high-aperture metalens for generating and detecting laser optical vortices, Nanomaterials, 2022, vol. 12, no. 15, art. no. 2602. https://doi.org/10.3390/nano12152602

    Article  Google Scholar 

  40. Tian, Y., Wang, L., Duan, G., and Yu, L. Multi-trap optical tweezers based on composite vortex beams, Opt. Commun., 2021, vol. 485, art. no. 126712. https://doi.org/10.1016/j.optcom.2020.126712

    Article  Google Scholar 

  41. Qiu, S., Shao, Q., Ren, Y., Liu, T., Chen, L., Li, Z., and Wang, C., Manipulate and detect the rotation speed of particles simultaneously using perfect vortex, Proc. SPIE, 2019, vol. 11338, art. no. 1133810. https://doi.org/10.1117/12.2542936

    Article  Google Scholar 

  42. Kazanskiy, N.L., Butt, M.A., Degtyarev, S.A., and Khonina, S.N. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index, Comput. Opt., 2020, vol. 44, no. 3, pp. 295–318. https://doi.org/10.18287/2412-6179-CO-743

    Article  Google Scholar 

  43. Song, Q., Yuan, R. Tong, L., Linlin, C., Chen, W., Zhimeng, L., and Qiongling, S., Spinning object detection based on perfect optical vortex, Opt. Lasers Eng., 2020, vol. 124, art. no. 105842. https://doi.org/10.1016/j.optlaseng.2019.105842

    Article  Google Scholar 

  44. Barshak, E.V., Lapin, B.P., Vikulin, D.V., Alieva, S.S., Alexeyev, C.N., and Yavorsky, M.A., All-fiber SWAP-CNOT gate for optical vortices, Comput. Opt., 2021, vol. 45, no. 6, pp. 853–859. https://doi.org/10.18287/2412-6179-CO-938

    Article  Google Scholar 

  45. Kotlyar, V.V., Kovalev, A.A., Kozlova, E.S., and Savelyeva, A.A., Tailoring the topological charge of a superposition of identical parallel Laguerre–Gaussian beams, Micromachines, 2022, vol. 13, no. 12, art. no. 2227. https://doi.org/10.3390/mi13122227

    Article  Google Scholar 

  46. Kazanskiy N.L., Butt M.A., and Khonina S.N., Optical computing: Status and perspectives Nanomaterials, 2022, vol. 12, no. 13, art. no. 2171. https://doi.org/10.3390/nano12132171

    Article  Google Scholar 

  47. Nevzorov, A.A. and Stankevich, D.A., A method of wavefront distortions correction for an atmospheric optical link with a small volume of information transmitted through a service channel, Comput. Opt., 2020, vol. 44, no. 5, pp. 848–851. https://doi.org/10.18287/2412-6179-CO-733

    Article  Google Scholar 

  48. Khonina, S.N., Kazanskiy, N.L., Butt, M.A., and Karpeev, S.V., Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: A review, Opto-Electron. Adv., 2022, vol. 5, no. 8, art. no. 210127. https://doi.org/10.29026/oea.2022.210127

    Article  Google Scholar 

  49. Lukin, V.P., Botygina, N.N., Konyaev, P.A., Kulagin, O.V., and Gorbunov, I.A., The combined use of adaptive optics and nonlinear optical wavefront reversal techniques to compensate for turbulent distortions when focusing laser radiation on distant objects, Comput. Opt., 2020, vol. 44, no. 4, pp. 519–532. https://doi.org/10.18287/2412-6179-CO-725

    Article  Google Scholar 

  50. Lyubopytov, V.S., Tlyavlin, A.Z., Sultanov, A.Kh., Bagmanov, V.Kh., Khonina, S.N., Karpeev, S.V., and Kazanskiy, N.L., Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling, Comput. Opt., 2013, vol. 37, no. 3, pp. 352–359.

    Article  Google Scholar 

  51. Karpeev, S.V., Podlipnov, V.V., Ivliev, N.A., and Khonina, S.N., High-speed format 1000BASE-SX/LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT, Comput. Opt., 2020, vol. 44, no. 4, pp. 578–581. https://doi.org/10.18287/2412-6179-CO-772

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-12-00137 (in part of analytical investigation in Sections 2–4) and by FSRC “Crystallography and Photonics.” Russian Academy of Sciences, State Assignment 00137 (in part of numerical simulation in Section 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Stafeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotlyar, V.V., Stafeev, S.S., Zaitsev, V.D. et al. Poincare Beams in Tight Focus. Opt. Mem. Neural Networks 32 (Suppl 1), S109–S119 (2023). https://doi.org/10.3103/S1060992X23050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X23050119

Keywords:

Navigation