Skip to main content
Log in

Digital Sorting of Structured Vector LG Beams by the Moment of Intensity Method

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

In this paper, studies have been carried out on the formation of complex structured Laguerre-Gauss vector beams. For the first time, a digital method of intensity moments was used, which allows one to determine the mode composition using a single intensity distribution in each polarization component in the focal plane, either of a spherical lens, or in the plane of double focus of a cylindrical lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhan, Q., Cylindrical vector beams: From mathematical concepts to applications, Adv. Opt. Photonics, 2009, vol. 1, pp. 1–57. https://doi.org/10.1364/AOP.1.000001

    Article  Google Scholar 

  2. Karpeev, S.V., Generation of radially polarized zero-order Bessel beams by diffractive and polarization optics, Comput. Opt., 2016, vol. 40, no. 4, pp. 583–587. https://doi.org/10.18287/2412-6179-2016-40-4-583-587

    Article  Google Scholar 

  3. Karpeev, S.V., Podlipnov, V.V., Degtyarev, S.A., and Algubili, A.M., Formation of high-order cylindrical vector beams with sector sandwich structures, Comput. Opt., 2022, vol. 46, no. 5, pp. 682–691. https://doi.org/10.18287/2412-6179-CO-1096

    Article  Google Scholar 

  4. Stafeev, S.S., Kozlova, E.S., and Nalimov, A.G., Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens, Comput. Opt., 2020, vol. 44, no. 1, pp. 29–33. https://doi.org/10.18287/2412-6179-CO-633

    Article  Google Scholar 

  5. Kozawa, Yu., Generation of a radially polarized laser beam by use of a conical Brewster prism, Opt. Lett., 2005, vol. 30, no. 2), pp. 3063–3065. https://doi.org/10.1364/OL.30.003063

  6. Kawauchi, H., Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate, Opt. Lett., 2008, vol. 33, no. 4, pp. 399–401. https://doi.org/10.1364/OL.33.000399

    Article  Google Scholar 

  7. Tidwell, S.C., Generating radially polarized beams interferometrically, Appl. Opt., 1990, vol. 29, pp. 2234–2239. https://doi.org/10.1364/AO.29.002234

    Article  Google Scholar 

  8. Angelsky, O.V., Mokhun, I.I., Mokhun, A.I., and Soskin, M.S., Interferometric methods in diagnostics of polarization singularities, Phys. Rev. E, 2002, vol. 65, 036602. https://doi.org/10.1103/PhysRevE.65.036602

    Article  Google Scholar 

  9. Rosales-Guzmán, C., Bhebhe, N., and Forbes, A., Simultaneous generation of multiple vector beams on a single SLM, Opt. Express, 2017, vol. 25, no. 21, pp. 25697–25706. https://doi.org/10.1364/OE.25.025696

    Article  Google Scholar 

  10. Ibragimov, A., Rubass, A., Halilov, S., Sokolenko, B., Akimova, Y., and Bretsko, M., Modeling of self-consistent modes optical fibers with V = 3.8, J. Phys.: Conf. Ser., 2018, vol. 1062, no. 1, 012002. https://doi.org/10.1088/1742-6596/1062/1/012002

    Article  Google Scholar 

  11. Halilov, S., Ilyasova, A., Rubass, A., and Pogrebnaya, A., Multiplexing and demultiplexing of the complex signal in the singular beams propagating in a few-mode optical fibers: An experiment, J. Phys.: Conf. Ser., 2016, vol. 737, no. 1, 012003. https://doi.org/10.1088/1742-6596/737/1/012003

    Article  Google Scholar 

  12. Halilov, S.I., Rubass, A.F., Sokolenko, B.V., Volyar, A.V., Bretsko, M.V., Akimova, Ya.E., Shostka, V.I., Yakubov, S.I., and Onikienko, E.V., Spiral fiber optic filter, 2022 VIII International Conf. on Information Technology and Nanotechnology (ITNT), 2022, pp. 1–4. https://doi.org/10.1109/ITNT55410.2022.9848766

  13. Shostka, N.V., Sokolenko, B.V., Karakcheva, O.S., Prisyazhniuk, A.V., Voytitsky, V.I., Poletaev, D.A., and Halilov, S.I., Digital holographic visualization of microparticles retained by an optical spatial trap, J. Phys.: Conf. Ser., 2020, vol. 1697, no. 1, 012161. https://doi.org/10.1088/1742-6596/1697/1/012161

    Article  Google Scholar 

  14. Wang, J., Advances in communications using optical vortices, Photonics Res., 2016, vol. 4, no. 5, pp. B14–B28. https://doi.org/10.1364/PRJ.4.000B14

    Article  Google Scholar 

  15. Karpeev, S.V., Podlipnov, V.V., and Algubili, A.M., An interference scheme for generating inhomogeneously polarized laser radiation using a spatial light modulator, Comput. Opt., 2020, vol. 44, no. 2, pp. 214–218. https://doi.org/10.18287/2412-6179-CO-698

    Article  Google Scholar 

  16. Yi, Zh., Li, P., ChaoJie, M., Sheng, L., Huachao, Ch., Han, L., Jianlin, Zh., Efficient generation of vector beams by calibrating the phase response of a spatial light modulator, Appl. Opt., 2017, vol. 56, pp. 4956–4960. https://doi.org/10.1364/AO.56.004956

    Article  Google Scholar 

  17. Shen, Y., Wang, X., Xie, Z., Min, Ch., Fu, X., Liu, Q., Gong, M., and Yuan, X., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light: Sci. Appl., 2019, vol. 8, no. 90. https://doi.org/10.1038/s41377-019-0194-2

  18. Kotlyar, V.V., Kovalev, A.A., and Savelyeva, A.A., Topological charge of a superposition of identical parallel single-ringed Laguerre-Gaussian beams, Comput. Opt., 2022, vol. 46, no. 2, pp. 184–188. https://doi.org/10.18287/2412-6179-CO-1086

    Article  Google Scholar 

  19. Kotlyar, V.V., Kovalev, A.A., and Nalimov, A.G., Superposition of two Laguerre-Gaussian beams shifted from the optical axis, Comput. Opt., 2022, vol. 46, no. 3, pp. 366–374. https://doi.org/10.18287/2412-6179-CO-1057

    Article  Google Scholar 

  20. Kotlyar, V.V. and Kovalev, A.A., Orbital angular momentum of structurally stable laser beams, Comput. Opt., 2022; vol. 46, no. 4, pp. 517–521. https://doi.org/10.18287/2412-6179-CO-1108

    Article  Google Scholar 

  21. Volyar, A., Abramochkin, E., Akimova, Y., Bretsko, M., and Egorov, Y., Fast oscillations of orbital angular momentum and Shannon entropy caused by radial numbers of structured vortex beams, Appl. Opt., 2022, vol. 61, no. 21, pp. 6398–6407. https://doi.org/10.1364/AO.464178

    Article  Google Scholar 

  22. Kotlyar, V.V., Kovalev, A.A., and Savelyeva, A.A., Coherent superposition of the Laguerre-Gaussian beams with different wavelengths: colored optical vortices, Comput. Opt., 2022, vol. 46, no. 5, pp. 692–700. https://doi.org/10.18287/2412-6179-CO-1106

    Article  Google Scholar 

  23. Kotlyar, V.V., Abramochkin, E.G., Kovalev, A.A., and Savelyeva, A.A., Double Laguerre-Gaussian beams, Comput. Opt., 2022, vol. 46(6), pp. 872–876. https://doi.org/10.18287/2412-6179-CO-1177

    Article  Google Scholar 

  24. Khonina, S.N., Volotovskiy, S.G., and Kirilenko, M.S., A method of generating a random optical field using the Karhunen-Loeve expansion to simulate atmospheric turbulence, Comput. Opt., 2020, vol. 44, no. 1, pp. 53–59. https://doi.org/10.18287/2412-6179-CO-680

    Article  Google Scholar 

  25. Kotlyar, V.V., Kovalev, A.A., Kalinkina, D.S., and Kozlova, E.S., Fourier-Bessel beams of finite energy, Comput. Opt., 2021, vol. 45, no. 4, pp. 506–511. https://doi.org/10.18287/2412-6179-CO-864

    Article  Google Scholar 

  26. Born, M., Principles of Optics, Born, M. and Wolf, E., Ed., Oxford, London, Edinburgh, New York, Paris, Frankfurt, 1968.

    Google Scholar 

  27. Dennis, M.R., Polarization singularities in paraxial vector fields: morphology and statics, Opt. Commun., 2002, vol. 213, pp. 201–221. https://doi.org/10.1016/S0030-4018(02)02088-6

    Article  Google Scholar 

  28. Volyar, A.V., Bretsko, M.V., Akimova, Ya.E., and Egorov, Yu.A., Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams, Comput. Opt., 2018, vol. 41, no. 1, pp. 736–743. https://doi.org/10.18287/2412-6179-2017-42-5-736-743

    Article  Google Scholar 

  29. Volyar, A.V., Abramochkin, E.G., Egorov, Yu.A., Bretsko, M.V., and Akimova, Ya.E., Digital sorting of Hermite-Gauss beams: mode spectra and topological charge of a perturbed Laguerre-Gauss beam, Comput. Opt., 2020, vol. 44, no. 4, pp. 501–509. https://doi.org/10.18287/2412-6179-CO-747

    Article  Google Scholar 

  30. Volyar, A.V., Bretsko, M.V., Akimova, Ya.E., and Egorov, Yu.A., Sorting Laguerre-Gaussian beams by radial numbers via intensity moments, Comput. Opt., 2020, vol. 44, no. 2, pp. 155–166. https://doi.org/10.18287/2412-6179-CO-677

    Article  Google Scholar 

  31. Volyar, A.V., Bretsko, M.V., Akimova, Y.E., and Egorov, Y.A., Digital analysis of a speckle pattern of chaotic mode composition and restoration of a regular intensity pattern after a multimode fiber, Comput. Opt., 2021, vol. 45, no. 2, pp. 179–189. https://doi.org/10.18287/2412-6179-CO-831

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Khalilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilov, S.I., Bretsko, M.V., Akimova, Y.E. et al. Digital Sorting of Structured Vector LG Beams by the Moment of Intensity Method. Opt. Mem. Neural Networks 32 (Suppl 1), S90–S96 (2023). https://doi.org/10.3103/S1060992X23050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X23050089

Keywords:

Navigation