Skip to main content
Log in

Investigation of the Training Data Set Influence on the Accuracy of the Optical Laguerre-Gaussian Modes Recognition

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

This paper investigates the accuracy of convolutional neural network recognition of Laguerre and Hermite-Gauss optical modes with geometric distortions in the form of affine transformations. The influence of training data sampling on the accuracy is analyzed. The ability of a convolutional neural network to recognize Laguerre and Hermite-Gaussian optical modes with geometric distortions caused by environmental distortions and described by affine transformations was also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Huang, Z., Wang, P., Liu, J., Xiong, W., He, Y., Xiao, J., Ye, H., Li, Y., Chen, S., and Fan, D., All-optical signal processing of vortex beams with diffractive Deep Neural Networks, Phys. Rev. Appl., 2021, vol. 15, no. 1, pp. 014037.

    Article  Google Scholar 

  2. He, Y., Wang, P., Wang, C., Liu, J., Ye, H., Zhou, X., Li, Y., Chen, S., Zhang, X., and Fan, D., All-optical signal processing in structured light multiplexing with dielectric meta-optics, ACS Photonics, 2020, vol. 7, no. 1, pp. 135–146.

    Article  Google Scholar 

  3. Kotlyar, V.V., Kovalev, A.A., and Porfirev, A.P. Vortex Laser Beams, CRC Press, 2018.

    Book  Google Scholar 

  4. Levy, U., Silberberg, Y., and Davidson, N., Mathematics of vectorial Gaussian beams, Adv. Opt. Photon., 2019, vol. 11, no. 4, pp. 828–891.

    Article  Google Scholar 

  5. Kovalev, A.A., Kotlyar, V.V., and Kalinkina, D.S., Orbital angular momentum and topological charge of a Gaussian beam with multiple optical vortices, Comput. Opt., 2020, vol. 44, no. 1, pp. 34–39.

    Article  Google Scholar 

  6. Mendoza-Hernández, J., Arroyo-Carrasco, M.L., Iturbe-Castillo, M.D., and Chávez-Cerda, S., Laguerre–Gauss beams versus Bessel beams showdown: peer comparison, Opt. Lett., 2015, vol. 40, no. 16, pp. 3739–3742.

    Article  Google Scholar 

  7. Kotlyar, V.V., Kovalev, A.A., and Volyar, A.V., Topological charge of optical vortices and their superpositions, Comput. Opt., 2020, vol. 44, no. 2, pp 145–154.

    Google Scholar 

  8. Kotlyar, V.V. and Kovalev, A.A., Topological charge of a superposition of two Bessel-Gaussian beams, Comput. Opt., 2021, vol. 45, no. 1, pp. 19–28.

    Article  Google Scholar 

  9. Kotlyar, V.V. and Kovalev, A.A., Sinusoidal Gaussian optical vortex as a superposition of two hypergeometric beams, Comput. Opt., 2022, vol. 46, no. 1, pp. 16–21.

    Google Scholar 

  10. Kovalev, A.A., Kotlyar, V.V., Kalinkina, D.S., and Nalimov, A.G., Off-axis elliptic Gaussian beams with an intrinsic orbital angular momentum, Comput. Opt., 2021, vol. 45, no. 6, pp. 809–817.

    Article  Google Scholar 

  11. Naik, D.N. and Viswanathan, N.K., Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer, J. Opt., 2016, vol. 18, no. 9, pp. 095601.

    Article  Google Scholar 

  12. Kotlyar, V.V., Kovalev, A.A., Kozlova, E.S., Savelyeva, A.A., and Stafeev, S.S., New type of vortex laser beams: Squared Laguerre–Gaussian beam, Optik, 2022, vol. 270, pp. 169916.

    Article  Google Scholar 

  13. Kotlyar, V.V. and Kovalev, A.A., Topological charge of optical vortices devoid of radial symmetry, Comput. Opt., 2020; vol. 44, no. 4, pp. 510–518.

    Google Scholar 

  14. Sayan, Ö.F., Gerçekcioğlu, H., and Baykal, Y., Hermite Gaussian beam scintillations in weak atmospheric turbulence for aerial vehicle laser communications, Opt. Commun., 2020, vol. 458, pp. 124735.

    Article  Google Scholar 

  15. Luan, H., Lin, D., Li, K., Meng, W., Gu, M., and Fang, X., 768-ary Laguerre–Gaussian-mode shift keying free-space optical communication based on convolutional neural networks, Opt. Express, 2021, vol. 29, no. 13, pp. 19807–19818.

    Article  Google Scholar 

  16. Cao, M., Yin, Y., Zhou, J., Tang, J., Cao, L., Xia, Y., and Yin, J., Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment, Appl. Phys. Lett., 2021, vol. 119, no. 14, pp. 141103.

    Article  Google Scholar 

  17. Wang, P., Xiong, W., Huang, Z., He, Y., Liu, J., Ye, H., Xiao, J., Li, Y., Fan, D., and Chen, S., Diffractive Deep Neural Network for optical orbital angular momentum multiplexing and demultiplexing, IEEE J. Sel. Top. Quantum Electron., 2022, vol. 28, no. 4, pp. 7500111.

    Article  Google Scholar 

  18. Bukin, D.P. and Kozlova, E.S., Neural network for recognition noisy images of Laguerre–Gaussian modes, Proc. SPIE, 2022, vol. 12295, pp. 122950U.

    Google Scholar 

  19. Sharifi, S., Banadaki, Y., Siddiqui, E., Cuzzo, S., Bhusal, N., Cohen, L., Kalasky, A., Prajapati, N., Soto-Garcia, R., Brown, S., Novikova, I., Mikhailov, E., Veronis, G., and Dowling, J., Identifying Laguerre–Gaussian modes using Convolutional Neural Network, 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 2019, pp. 475–478.

  20. Sharifi, S., Banadaki, Y.M., Veronis, G., and Dowling, J.P., Towards classification of experimental Laguerre–Gaussian modes using convolutional neural networks, Opt. Eng., 2020, vol. 59, no. 7, pp. 076113.

    Article  Google Scholar 

  21. Li, Z., Liu, F., Yang, W., Peng S., and Zhou, J., A survey of Convolutional Neural Networks: Analysis, applications, and prospects, IEEE Trans. Neural Networks Learn. Syst., 2022, vol. 33, no. 12, pp. 6999–7019.

    Article  MathSciNet  Google Scholar 

  22. Sulavko, A.E., An abstract model of an artificial immune network based on a classifiers committee for biometric pattern recognition by the example of keystroke dynamics, Comput. Opt., 2020, vol. 44, no. 5, pp. 830–842.

    Article  Google Scholar 

  23. Zhou, D.-X., Theory of deep convolutional neural networks: Downsampling, Neural Networks, 2020, vol. 124, pp. 319–327.

    Article  MATH  Google Scholar 

  24. Rodin, I.A., Khonina, S.N., Serafimovich, P.G., and Popov, S.B., Recognition of wavefront aberrations types corresponding to single Zernike functions from the pattern of the point spread function in the focal plane using neural networks, Comput. Opt., 2020, vol. 44, no. 6, pp. 923–930.

    Article  Google Scholar 

  25. Bragin, A.D. and Spitsyn, V.G., Motor imagery recognition in electroencephalograms using convolutional neural networks, Comput. Opt., 2020, vol. 44, no. 3, pp. 482–487.

    Article  Google Scholar 

  26. Gorbachev, V.A., Krivorotov, I.A., Markelov, A.O., and Kotlyarova, E.V., Semantic segmentation of satellite images of airports using convolutional neural networks, Comput. Opt., 2020, vol. 44, no. 4, pp. 636–645.

    Article  Google Scholar 

  27. Firsov, N.A., Podlipnov, V.V., Ivliev, N.A., Nikolaev, P.P., Mashkov, S.V., Ishkin, P.A., Skidanov, R.V., and Nikonorov, A.V., Neural network-aided classification of hyperspectral vegetation images with a training sample generated using an adaptive vegetation index, Comput. Opt., 2021, vol. 45, no. 6, pp. 887–896.

    Article  Google Scholar 

  28. Ganeeva, Y.K. and Myasnikov, E.V., Identifying persons from iris images using neural networks for image segmentation and feature extraction, Comput. Opt., 2022, vol. 46, no. 2, pp. 308–316.

    Article  Google Scholar 

  29. Bohush, R.P. and Zakharava, I.Y., Person tracking algorithm based on convolutional neural network for indoor video surveillance, Comput. Opt., 2020, vol. 40, no. 1, pp. 109–116.

    Google Scholar 

  30. Kalinina, M.O. and Nikolaev, P.L., Book spine recognition with the use of deep neural networks, Comput. Opt., 2020, vol. 44, no. 6, pp. 968–977.

    Article  Google Scholar 

  31. Thanh, D.N.H., Hai, N.H., Hieu, L.M., Tiwari, P., and Prasath, V.B.S., Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation, Comput. Opt., 2021, vol. 45, no. 1, pp. 122–129.

    Article  Google Scholar 

  32. Xia, T., Liu, D., Dong, A., Wang, G., Zhong, H., and Wang, Y., Properties of partially coherent elegant Laguerre–Gaussian beam in free space and oceanic turbulence, Optik, 2020, vol. 201, pp. 163514.

    Article  Google Scholar 

  33. Karpeev, S.V., Podlipnov, V.V., Ivliev, N.A., and Khonina, S.N., High-speed format 1000BASE-SX/LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT, Comput. Opt., 2020, vol. 44, no. 4, pp. 578–581.

    Article  Google Scholar 

  34. Hricha, Z., Lazrek, M., Yaalou, M., and Belafhal, A., Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence, Opt. Quantum Electron., 2021, vol. 53, p. 383.

    Article  Google Scholar 

  35. Fu, X., Bai, Y., and Yang, Y., Measuring OAM by the hybrid scheme of interference and convolutional neural network, Opt. Eng., 2021, vol. 60, no. 6, pp. 7500111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bekhterev.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekhterev, A.V. Investigation of the Training Data Set Influence on the Accuracy of the Optical Laguerre-Gaussian Modes Recognition. Opt. Mem. Neural Networks 32 (Suppl 1), S54–S62 (2023). https://doi.org/10.3103/S1060992X2305003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X2305003X

Keywords:

Navigation