Skip to main content
Log in

Design and Simulation of a Reconfigurable Multifunctional Optical Sensor

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

Generally, in Visible Light Communication (VLC) systems, Position Sensitive Device (PSD) sensor is used only for tracking purposes. However, the tracking process functions until both transmitter and receiver align, thus the PSD sensor remains idle for a long time. This interval can be exploited to achieve other functions by modifying its architecture. In this paper, a modification of the PSD structure has been achieved to make it able to perform energy harvesting and data acquisition as well as tracking. As the PSD is mainly formed of an array of photodiodes, our main idea is to use transistors to switch between the two modes of operation of the photodiodes (photoconductive and photovoltaic). Furthermore, switching between the output pins could be achieved depending on the desired function. The proposed sensor can extend the battery lifetime, increase the integration and the functionality, and reduce the physical size of the system. Simulation using MATALB was performed to validate the concept of the proposed structure and its operation. The results showed that the proposed sensor works successfully and it can be considered for further manufacturing levels. The presented sensor might be used in Free Space Optical (FSO) communication like cube satellite, or even in Underwater Wireless Optical Communication (UWOC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Wei, Z., Wang, L., Li, Z., Chen, C.J., Wu, M.C., Wang, L., and Fu, H.Y., Micro-LEDs illuminate visible light communication, IEEE Communication Magazine, 2022, pp. 1–7. https://doi.org/10.1109/MCOM.002.2200109

  2. Ndjiongue, A.R., Ferreira, H.C., and Ngatched, T.M., Visible light communications (VLC) technology, Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, pp. 1–15.

    Google Scholar 

  3. Kumar, N., Lourenco, N., Spiez, M., and Aguiar, R.L., Visible light communication systems conception and vidas, IETE Tech. Rev., 2008, vol. 25, no. 6, pp. 359–367.

    Article  Google Scholar 

  4. Cevik, T. and Yilmaz, S., An overview of visible light communication systems, Int. J. Comput. Networks Commun. (IJCNC), 2015, vol. 7, no. 6, pp. 139–150.

    Article  Google Scholar 

  5. Liu, Z., Guan, W., and Wen, S., Improved target signal source tracking and extraction method based on outdoor visible light communication using an improved particle filter algorithm based on Cam-Shift algorithm, IEEE Photonics J., 2019, vol. 11, no. 6, pp. 1–20.

    Google Scholar 

  6. Do, T.H. and Yoo, M., An in-depth survey of visible light communication based positioning systems, Sensors, 2016, vol. 16, no. 5, p. 678.

    Article  Google Scholar 

  7. Othman, A. and Maga, D., Indoor photovoltaic energy harvester with rechargeable battery for wireless sensor node, in 2018 18th International Conference on Mechatronics-Mechatronika (ME), IEEE, pp. 1–6.

  8. Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., and Haas, H., VLC: Beyond point-to-point communication, IEEE Commun. Mag., 2014, vol. 52, no. 7, pp. 98–105.

    Article  Google Scholar 

  9. Luo, J., Fan, L., and Li, H., Indoor positioning systems based on visible light communication: State of the art, IEEE Commun. Surv. Tutorials, 2017, vol. 19 no. 4, pp. 2871–2893.

    Article  Google Scholar 

  10. Albayati, S., An overview of visible light communication systems, Int. J. Comput. Sci. Mobile Comput., 2019, vol. 8, no. 6, pp. 51–56.

    Google Scholar 

  11. Obeed, M., Salhab, A.M., Alouini, M.S., and Zummo, S.A., On optimizing VLC networks for downlink multi-user transmission: A survey, IEEE Commun. Surv. Tutorials, 2019, vol. 21, no. 3, pp. 2947–2976.

    Article  Google Scholar 

  12. Ge, P., Liang, X., Wang, J., Zhao, C., Gao, X., and Ding, Z., Optical filter designs for multi-color visible light communication, IEEE Trans. Commun., 2018, vol. 67, no. 3, pp. 2173–2187.

    Article  Google Scholar 

  13. Tedeschi, P., Sciancalepore, S., and Di Pietro, R., Security in energy harvesting networks: A survey of current solutions and research challenges, IEEE Commun. Surv. Tutorials, 2020, vol. 22, no. 4, pp. 2658–2693.

    Article  Google Scholar 

  14. Blinowski, G., Security of visible light communication systems –A survey, Phys. Commun., 2019, vol. 34, pp. 246–260.

    Article  Google Scholar 

  15. Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G.P., and Hamblin, M.R., Photoantimicrobials—Are we afraid of the light?, Lancet Infect. Dis., 2017, vol. 17, no. 2, pp. e49–e55.

    Article  Google Scholar 

  16. Căilean, A.M., and Dimian, M., Current challenges for visible light communications usage in vehicle applications: A survey, IEEE Commun. Surv. Tutorials, 2017, vol. 19, no. 4, pp. 2681–2703.

    Article  Google Scholar 

  17. Sheoran, S., Garg, P., and Sharma, P.K., Location tracking for indoor VLC systems using intelligent photodiode receiver, IET Commun., 2018, vol. 12, no. 13, pp. 1589–1594.

    Article  Google Scholar 

  18. Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., and Zhang, T., A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications, IEEE Commun. Surv. Tutorials, 2018, vol. 20, no. 2, pp. 1104–1123.

    Article  Google Scholar 

  19. Kong, M., Kang, C.H., Alkhazragi, O., Sun, X., Guo, Y., Sait, M., Holguin-Lerma, J.A., Ng, T.K., and Ooi, B.S., Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication, Prog. Quant. Electronics, 2020, vol. 74, p. 100300.

    Article  Google Scholar 

  20. Khan, A.S. and Khan, F.U., A survey of wearable energy harvesting systems, Int. J. Energy Res., 2022, vol. 46, no. 3, pp. 2277–2329.

    Article  Google Scholar 

  21. Kiziroglou, M.E. and Yeatman, E.M., Materials and techniques for energy harvesting, Functional Materials for Sustainable Energy Applications, Woodhead Publ., 2012, pp. 541–572.

    Google Scholar 

  22. Chirap, A., Popa, V., Coca, E., and Potorac, D.A., A study on light energy harvesting from indoor environment: The autonomous sensor nodes, in 2014 International Conference on Development and Application Systems (DAS), IEEE, 2014, pp. 127–131.

  23. Choudhary, P., Bhargava, L., Singh, V., Choudhary, M., and kumar Suhag, A., A survey – Energy harvesting sources and techniques for internet of things devices, Mater. Today: Proc., 2020, vol. 30, no. 1, pp. 52–56.

    Google Scholar 

  24. Dziadak, B., Makowski, Ł. and Michalski, A., Survey of energy harvesting systems for wireless sensor networks in environmental monitoring, Metrol. Meas. Syst., 2016, vol. 23, no. 4, pp. 495–512.

    Article  Google Scholar 

  25. Fish, A., Hamami, S., and Yadid-Pecht, O., Self-powered active pixel sensors for ultra-low-power applications, IEEE Int. Symposium on Circuits and Systems, IEEE, 2005, pp. 5310–5313.

  26. Liao, M., Koide, Y., and Alvarez, J., Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond, Appl. Phys. Lett., 2007, vol. 90, no. 12, pp. 123507.

    Article  Google Scholar 

  27. Ruan, C., Zhao, W., Zhu, S.L., Liu, H.J., Yang, H.C., and Ruan, C.L., Characterization of photoconductive semiconductor switches under nonlinear mode condition, Microwave Opt. Technol. Lett., 2009, vol. 51, no. 1, pp. 56–59.

    Article  Google Scholar 

  28. Cemine, V.J., Sarmiento, R., and Blanca, C.M., High-resolution mapping of the energy conversion efficiency of solar cells and silicon photodiodes in photovoltaic mode, Opt. Commun., 2008, vol. 281, no. 22, pp. 5580–5587.

    Article  Google Scholar 

  29. Wei, Y., Lehmann, T., Silvestri, L., Wang, H., and Ladouceur, F., Photodiode working in zero-mode: detecting light power change with DC rejection and AC amplification, Opt. Express, 2021, vol. 29, no. 12, pp. 18915–18931.

    Article  Google Scholar 

  30. Soon, J.J. and Low, K.S., Optimizing photovoltaic model parameters for simulation, in 2012 IEEE Int. Symposium on Industrial Electronics, IEEE, 2012, pp. 1813–1818.

  31. Bader, S., Ma, X., and Oelmann, B., One-diode photovoltaic model parameters at indoor illumination levels – A comparison, Sol. Energy, 2019, vol. 180, pp. 707–716.

    Article  Google Scholar 

  32. da Costa, W.T., Fardin, J.F., Simonetti, D.S., and de VBM Neto, L., Identification of photovoltaic model parameters by differential evolution, in 2010 IEEE Int. Conference on Industrial Technology, IEEE, 2010, pp. 931–936.

  33. Ahmed, M.T., Gonçalves, T., and Tlemcani, M., Single diode model parameters analysis of photovoltaic cell, in 2016 IEEE Int. Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2016, pp. 396–400.

  34. Dwik, S. and Somasundaram, N., Modeling and simulation of two-dimensional position sensitive detector (PSD) sensor, Int. J. Innovative Technol. Explor. Eng. (IJITEE), 2019, vol. 9, no. 1, pp. 744–753.

    Article  Google Scholar 

  35. Ivan, I.A., Ardeleanu, M., and Laurent, G.J., High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: Application to 2D object tracking over a smart surface, Sensors, 2012, vol. 12, no. 12, pp. 16771–16784.

    Article  Google Scholar 

  36. Heweage, M.F., Wen, X., and Eldamarawy, A., Developing laser spot position determination circuit modeling and measurements with a quad detector, Int. J. Model. Optim., 2016, vol. 6, no. 6, pp. 310–316.

    Article  Google Scholar 

  37. Kim, S.M. and Won, J.S., Simultaneous reception of visible light communication and optical energy using a solar cell receiver, in 2013 Int. Conference on ICT Convergence (ICTC), IEEE, 2013, pp. 896–897.

  38. Wang, Z., Tsonev, D., Videv, S., and Haas, H., On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting, IEEE J. Sel. Areas Commun., 2015, vol. 33, no. 8, pp. 1612–1623.

    Article  Google Scholar 

  39. Fakidis, J., Videv, S., Helmers, H., and Haas, H., 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell, IEEE Photonics Technol. Lett., 2018, vol. 30, no. 9, pp. 841–844.

    Article  Google Scholar 

  40. Wang, H.Y., Wu, J.T., Chow, C.W., Liu, Y., Yeh, C.H., Liao, X.L., Lin, K.H., Wu, W.L., and Chen, Y.Y., Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication, Opt. Commun., 2018, vol. 407, pp. 245–249.

    Article  Google Scholar 

  41. Kong, M., Lin, J., Guo, Y., Sun, X., Sait, M., Alkhazragi, O., Kang, C.H., Holguin-Lerma, J.A., Kheireddine, M., Ouhssain, M., and Jones, B.H., AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater Internet-of-Things, IEEE Photonics J., 2020, vol. 12, no. 4, pp. 1–13.

    Google Scholar 

  42. Dwik, S. and Prabhaker, M.L.C., Survey on energy harvesting CMOS sensor based digital camera, Opt. Mem. Neural Networks, 2022, vol. 31, no. 1, pp. 97–106.

    Article  Google Scholar 

  43. Nayar, S.K., Sims, D.C., and Fridberg, M., Towards self-powered cameras, 2015 IEEE Int. Conf. on Computational Photography (ICCP), IEEE, 2015, pp. 1–10.

  44. Law, M.K., Bermak, A., and Shi, C., A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme, IEEE Trans. Circuits Syst., II: Express Briefs, 2011, vol. 58, no. 2, pp. 80–84.

    Google Scholar 

  45. Wang, H.T. and Leon-Salas, W.D., An image sensor with joint sensing and energy harvesting functions, IEEE Sens. J., 2015, vol. 15, no. 2, pp. 902–916.

    Article  Google Scholar 

  46. Khaled, T.A., Elkhatib, M.M., and El-Sherif, A.F., Design and Simulation of an Intelligent Laser Tracking System, Int. J. Signal Process. Syst., 2016, vol. 4, no. 4, pp. 328–333.

    Article  Google Scholar 

  47. Dwik, S., Somasundaram, N., al Musalli, T., and Amaya, M., Simple LASER tracking algorithm using Programmable System on Chip (PSoC) for Visible Light Communication (VLC), Opt. Mem. Neural Networks, 2022, vol. 31, no. 3, pp. 296–308.

    Article  Google Scholar 

  48. Kimme, F., Brick, P., Chatterjee, S., and Khanh, T.Q., Optimized flash light-emitting diode spectra for mobile phone cameras, Appl. Opt., 2013, vol. 52, no. 36, pp. 8779–8788.

    Article  Google Scholar 

  49. Ryer, A., Light, U., and Light, V., Light Measurement Handbook, International Light, 1997.

    Google Scholar 

  50. Michael, P.R., Johnston, D.E., and Moreno, W., A conversion guide: solar irradiance and lux illuminance, J. Meas. Eng., 2020, vol. 8, no. 4, pp. 153–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaher Dwik, G. Sasikala or S. Natarajan.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaher Dwik, Sasikala, G. & Natarajan, S. Design and Simulation of a Reconfigurable Multifunctional Optical Sensor. Opt. Mem. Neural Networks 32, 147–157 (2023). https://doi.org/10.3103/S1060992X2302008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X2302008X

Keywords:

Navigation