Skip to main content
Log in

Implementation Features of Invariant Optical Correlator Based on Amplitude LC SLM

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

Mathematical simulations of invariant optical-digital correlator operation are performed with the LC SLM used for the input images display and for display of the correlation filter holograms. Different phase dependences on amplitude are considered, particularly the measured dependence of the LC SLM HoloEye LC 2002. A method for optimization of correlation filters to eliminate the object recognition error due to the presence of additional phase modulation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lugt, A.V., Signal detection by complex spatial filtering, IEEE Trans. Inf. Theory, 1964, vol. 10, no. 2, pp. 139–145.

    Article  Google Scholar 

  2. Goodman, J.W, Introduction to Fourier Optics, Roberts and Company Publishers, 2005.

    Google Scholar 

  3. Kumar, B.V., Mahalanobis, A., and Juday, R.D., Correlation Pattern Recognition, Cambridge University Press, 2005.

    Book  Google Scholar 

  4. Evtikhiev, N.N., Starikov, S.N., Shaulskiy, D.V., Starikov, R.S., and Zlokazov, E.Y., Invariant correlation filter with linear phase coefficient holographic realization in 4-F correlator, Opt. Eng., 2011, vol. 50, no. 6.

  5. Evtikhiev, N.N., Starikov, S.N., Zlokazov, E.Y., Sirotkin, S.A., and Starikov, R.S., Realisation of invariant holographic filters with the linear phase coefficient in a Van der Lugt correlator, Quantum Electron., 2008, vol. 38, no. 2, p. 191.

    Article  Google Scholar 

  6. Evtikhiev, N.N., Starikov, S.N., Protsenko, E.D., Zlokazov, E.Yu., Solyakin, I.V., Starikov, R.S., Shapkarina, E.A., and Shaulskiy, D.V., Model of an invariant correlator with liquid-crystal spatial light modulators, Quantum Electron., 2012, vol. 42, no. 11, pp. 1039–1041.

    Article  Google Scholar 

  7. Johnson, O.C., Edens, W., Lu, T.T., and Chao, T.H., Optimization of OT-MACH filter generation for target recognition, Proc. SPIE, 2009, vol. 7340.

  8. Moriyama, K., Kuboyama, H., Arai, S., Fukuda, M., Kato, M., Kawaguchi, T., Yamamoto, S., and Inoue, M., Optical correlator optimized for medical applications, Proc. SPIE, 2012, vol. 8436.

  9. Birch, P.M., Gardezi, A., Young, R., and Chatwin, C., Volume holographic MACH correlator, Proc. SPIE, 2010, vol. 7696.

  10. Mahalanobis, A., Kumar, B.V., and Casasent, D., Minimum average correlation energy filters, Appl. Opt., 1987, vol. 26, no. 17, pp. 3633–3640.

    Article  Google Scholar 

  11. Ravichandran, G. and Casasent, D., Minimum noise and correlation energy optical correlation filter, Appl. Opt., 1992, vol. 31, no. 11, pp. 1823–1833.

    Article  Google Scholar 

  12. Evtikhiev, N.N., Ivanov, P.A., Lyapin, A.S., Reyzin, B.M., Shevchuk, A.V., Sirotkin, S.I., Starikov, R.S., and Zaharcev, A.V., Synthesis and research of LPCC invariant correlation filters for pattern recognition, Proc. SPIE, 2005, vol. 5851, pp. 242–245.

    Article  Google Scholar 

  13. Evtikhiev, N.N., Shaulskiy, D.V., Zlokazov, E.Y., and Starikov, R.S., Variants of minimum correlation energy filters: Comparative study, Proc. SPIE, 2012, vol. 8398.

  14. Mahalanobis, A., Kumar, B.V., Song, S., Sims, S.R.F., and Epperson, J.F., Unconstrained correlation filters, Appl. Opt., 1994, vol. 33, no. 17, pp. 3751–3759.

    Article  Google Scholar 

  15. Zhou, H., and Chao, T.H, MACH filter synthesizing for detecting targets in cluttered environment for grayscale optical correlator, Proc. SPIE, 1999, vol. 3715, pp. 394–398.

    Article  Google Scholar 

  16. Chao, T.H., Lu, T., and Zhou, H., Recent progress on grayscale optical correlator for automatic target recognition, Proc. SPIE, 2006, vol. 6245.

  17. Gardezi, A., Qureshi, T., Alkandri, A., Young, R.C.D., Birch, P.M., and Chatwin, C.R., Comparison of spatial domain optimal trade-off maximum average correlation height (OT-MACH) filter with scale invariant feature transform (SIFT) using images with poor contrast and large illumination gradient, Proc. SPIE, 2015, vol. 9477.

  18. Jarvis, J.F., Judice, C.N., and Ninke, W.H., A survey of techniques for the display of continuous tone pictures on bilevel displays, Comput. Graph. Image Process., 1976, vol. 5, no. 1, pp. 13–40.

    Article  Google Scholar 

  19. Lizana, A., Moreno, I., Márquez, A., Iemmi, C., Fernández, E., Campos, J., and Yzuel, M.J., Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics, Opt. Express, 2008, vol. 16, no. 21, pp. 16711–16722.

    Article  Google Scholar 

  20. Bondareva, A.P., Cheremkhin, P.A., Evtikhiev, N.N., Krasnov, V.V., Starikov, R.S., and Starikov, S.N., Measurement of characteristics and phase modulation accuracy increase of LC SLM “HoloEye PLUTO VIS,” J. Phys.: Conf. Ser., 2014, vol. 536, no. 1.

  21. Goncharov, D.S., Krasnov, V.V., Ponomarev, N.M., and Starikov, R.S., Measurement of additional phase modulation of an amplitude liquid crystal spatial light modulator HoloEye LC 2002 by dual-beam interferometric method, Practical Holography XXXII: Displays,Materials, and Applications, 2018, vol. 10558.

    Google Scholar 

  22. Goncharov, D.S., Evtikhiev, N.N., Krasnov, V.V., Ponomarev, N.M., and Starikov, R.S., The influence of additional phase modulation of an amplitude liquid crystal STLM on the image recognition characteristics in the invariant optical digital correlator, Comput. Opt., 2019, vol. 43, no. 2, pp. 200–208. https://doi.org/10.18287/2412-6179-2019-43-2-200-208

    Article  Google Scholar 

  23. Evtikhiev, N.N., Shaulskiy, D.V., Zlokazov, E.Y., and Starikov, R.S., MINACE filter realization as computer generated hologram for 4-f correlator, Proc. SPIE, 2013, vol. 8748.

  24. Shaulskiy, D.V., Evtikhiev, N.N., Zlokazov, E.Y., Starikov, S.N., Starikov, R.S., Petrova, E.K., and Molodtsov, D.Y., Variants of light modulation for MINACE filter implementation in 4-F correlators, Proc. SPIE, 2015, vol. 9598.

  25. Evtikhiev, N.N., Starikov, S.N., Sirotkin, S.A., Starikov, R.S., and Zlokazov, E.Y., LPCC invariant correlation filters: Realization in 4-f holographic correlator, Proc. SPIE, 2008, vol. 6977.

  26. Starikov, R.S. and Zlokazov, E.Y., Computer generated holographic invariant LPCC filters for 4-f correlator, Proc. SPIE, 2009, vol. 7358.

  27. Evtikhiev, N.N., Zlokazov, E.Yu., Starikov, S.N., Starikov, R.S., and Shaulskiy, D.V., Amplitude holographic LPCC filters for 4-f correlator: Variants of binary realization, Proc. SPIE, 2010, vol. 7835.

  28. Evtikhiev, N.N., Zlokazov, E.Y., Starikov, S.N., Starikov, R.S., Shapkarina, E.A., and Shaulskiy, D.V., LPCC filter realization in 4-F correlator of images with application of purely amplitude binary spatial modulation, Opt. Mem. Neural Networks, 2009, vol. 18, no. 3, p. 141.

    Article  Google Scholar 

  29. Goncharov, D.S., Zlokazov, E.Y., Petrova, E.K., Ponomarev, N.M., and Starikov, R.S., Features of the implementation of holographic invariant correlation filters based on a phase liquid-crystal space-time light modulator, Bull. Lebedev Phys. Inst., 2019, vol. 46, no. 4, pp. 126–129.

    Article  Google Scholar 

Download references

Funding

The presented researches were supported by Russian Foundation of Basic Research (RFBR) project no. 17-07-00254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Goncharov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, D.S., Petrova, E.K., Ponomarev, N.M. et al. Implementation Features of Invariant Optical Correlator Based on Amplitude LC SLM. Opt. Mem. Neural Networks 29, 110–117 (2020). https://doi.org/10.3103/S1060992X20020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X20020022

Keywords:

Navigation