Sakib, N., Yao, H., and Zhang, H., Reinforcing classical planning for adversary driving scenarios, arXiv: 1903.08606v1, 2019.
Xu, Z., Tang, C., and Tomizuka, M., Zero-shot deep reinforcement learning driving policy transfer for autonomous vehicles based on robust control, IEEE International Conference on Intelligent Transportation Systems (ITSC), 2019. https://doi.org/10.1109/ITSC.2018.8569612
Kim, M., Path planning and following for autonomous vehicles and its application to intersection with moving obstacles, MSc Thesis, University of Florida, 2017. https://ufdc.ufl.edu/UFE0051086/00001.
Paxton, C., Raman, V., Hager, G.D., and Kobilarov, M., Combining neural networks and tree search for task and motion planning in challenging environments, arXiv:1703.07887v1, 2017.
Tram, T., Jansson, A., Gronberg, R., Sjoberg, J., and Ali, M., Learning negotiating behavior between cars in intersections using deep Q-learning, arXiv:1810.10469v1, 2018.
Jaeyoung, L., Balakrishnan, A., Gaurav, A., Czarnecki, K., and Sedwards, S., WiseMove: A framework for safe deep reinforcement learning for autonomous driving, arXiv:1902.04118, 2019.
Receveur, J.-B., Victor, S., and Melchior, P., Trajectory optimization for autonomous vehicles on crossroads with mobile obstacles, IEEE Intelligent Vehicles Symposium (IV), 2018. https://doi.org/10.1109/IVS.2018.8500379
Chaplot, D.S., Gupta, S., Gupta, A., and Salakhutdinov, R., Modular visual navigation using active neural mapping, 2019. http://www.cs.cmu.edu/~dchaplot/papers/active_neural_mapping.pdf.
Bacchiani, G., Molinari, D., and Patander M., Microscopic traffic simulation by cooperative multi-agent deep reinforcement learning, arXiv:1903.01365v1, 2019.
Computer Vision Annotation Tool (CVAT). https://github.com/opencv/cvat.
Structural Analysis and Shape Descriptors. MinAreaRect. https://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html.
Fitzgibbon, A.W. and Fisher, R.B., A buyer’s guide to conic fitting, Proc. 5th British Machine Vision Conference, Birmingham, 1995, pp. 513–522.
Shetty, R., Fritz, M., and Schiele, B., Adversarial scene editing: Automatic object removal from weak supervision, arXiv:1806.01911, 2018.
Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B., Image inpainting for irregular holes using partial convolutions, arXiv:1804.07723, 2018.
Google Scholar
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W., OpenAI Gym, arXiv:1606.01540, 2016.
Intersection simulator, MIPT, 2019. https://github.com/cds-mipt/raai-summer-school-2019.
Yudin, D. and Slavioglo, D., Usage of fully convolutional network with clustering for traffic light detection, 7th Mediterranean Conference on Embedded Computing, MECO’2018, 2018, pp. 242–247.
Ester, M., Kriegel, H.P., Sander, J., and Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 226–231.
Redmon, J. and Farhadi, A., YOLOv3: An incremental improvement, arXiv:1804.027672018, 2018.
Ren, S., He, K., Girshick, R., and Sun, J., Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS, 2015.
Google Scholar
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., Focal loss for dense object detection, arXiv:1 708.02002v2, 2017.
Cai, Z. and Vasconcelos, N., Cascade R-CNN: Delving into high quality object detection, CVPR, 2018.
Google Scholar
He, K., Gkioxari, G., Dollár, P., and Girshick, R., Mask R-CNN, arXiv:1703.06870, 2017.
Cai, Z., and Vasconcelos, N., Cascade R-CNN: High quality object detection and instance segmentation, arXiv: 1906.09756, 2019.
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., and Xiao, B., Deep high-resolution representation learning for visual recognition, arXiv:1908.07919v1, 2019.
Shikunov, M., and Panov, A.I., Hierarchical reinforcement learning approach for the road intersection task, Biologically Inspired Cognitive Architectures 2019, BICA 2019,Advances in Intelligent Systems and Computing, 2020, pp. 495–506.
Google Scholar
Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018.
Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D., Rainbow: Combining improvements in deep reinforcement learning, arXiv:1710.02298, 2017.
Ziebart, B.D., Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy, Carnegie Mellon University, 2010.
Google Scholar