Skip to main content
Log in

Agricultural Vegetation Monitoring Based on Aerial Data Using Convolutional Neural Networks

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

In the present paper we discuss a problem of recognition of a state of agricultural vegetation using aerial data of different spatial resolutions. To solve this problem, we develop a classifier allowing us to divide the input images into three classes, which are “healthy vegetation”, “diseased vegetation”, and “soil”. The proposed classifier is based on two convolutional neural networks allowing us to perform classification into two classes, namely “healthy vegetation” and “diseased vegetation” and “vegetation’ and “soil”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Belyayev, B.I. and Katkovskiy, L.V., Opticheskoe distantsionnoe zondirovanie (Optical Remote Sensing), Minsk: Beloruss. Gos. Univ., 2006.

  2. Schowengerdt, R.A., Remote Sensing. Models and Methods for Image Processing, Academic Press, 2007, 3rd ed.

    Google Scholar 

  3. Yud-Ren Chen, Kuanglin Chao, and Moon S. Kim, Machine vision technology for agricultural applications, Comput. Electron. Agric., 2002, vol. 36, pp. 173–191.

    Article  Google Scholar 

  4. Kumar, N., Pandey, S., Bhattacharya, A., and Ahuja, P.S., et al., Do leaf surface' characteristics affect agrobaeterium infection in tea [Camellia sinensis (L.) O Kuntze]?, J. Biosci., 2004, vol. 29, no. 3, pp. 309–317.

    Article  Google Scholar 

  5. Wu, L., Wen, Y., Deng, X., and Peng, H., Identification of weed, corn using BP network based on wavelet features and fractal dimension, Sci. Res. Essay, 2009, vol. 4, no. 11, pp. 1194–1400.

    Google Scholar 

  6. Qin, Zh. and Zhang, M., Detection of rice sheath blight for in-season disease management using multispectral remote sensing, Int. J. Appl. Earth Obs. Geoinf., 2005, vol. 7, pp. 115–148.

    Article  Google Scholar 

  7. Aksoy, S., Akcay, H.G., and Wassenaar, T., Automatic mapping of linear woody vegetation features in agricultural landscapes using very high-resolution imagery, IEEE Trans. Geosci. Remote Sens., 2010, no. 48, pp. 511–522.

  8. Abdullahi, H.S. and Oba Mustpha Zubair, Advances of image processing in precision agriculture: Using deep learning convolution neural network for soil nutrient classification, J. Multidiscip. Eng. Sci. Technol., 2017, vol. 4, no. 8, pp. 7981–7987.

    Google Scholar 

  9. Wright, D., Rasmussen, V., Ramsey, R., Baker, D., and Ellsworth, J., Canopy reflectance estimation of wheat nitrogen content for grain protein management, GIScience Remote Sens., 2004, vol. 41, no. 4, pp. 287–300.

    Article  Google Scholar 

  10. Mate, K.A., Pooja, G., and Singh R. Kavita, Feature extraction algorithm for estimation of agriculture acreage from remote sensing images, World Conference on Futuristic Trends in Research and Innovation for Social Welfare, 2016, pp. 5–9.

  11. Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., and Zhang, L., A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery, PLoS ONE, 2018, vol. 13, no. 4, e0196302.

    Article  Google Scholar 

  12. Inkyu Sa, Zetao Chen, Marija Popovic, Raghav Khanna, Frank Liebisch, Juan Nieto, and Roland Siegwa, weedNet: Dense semantic weed classification using multispectral images and MAV for smart farming, IEEE Rob. Autom. Lett., 2018, vol. 3, no. 1, pp. 588–595.

    Article  Google Scholar 

  13. Potena, C., Nardi, D., and Pretto, A., Fast and accurate crop and weed identification with summarized train sets for precision agriculture, IAS 2016: Intelligent Autonomous Systems 14, 2017, pp. 105–121.

    Article  Google Scholar 

  14. Yao, C., Zhang, Y., Zhang, Y., and Liu, H., Application of convolutional neural network in classification of high resolution agricultural remote sensing images, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2017, vol. XLII-2/W7, pp. 989–992.

    Article  Google Scholar 

  15. Atole, R.R. and Park, D., A multiclass deep convolutional neural network classifier for detection of common rice plant anomalies, Int. J. Adv. Comput. Sci. Appl., 2018, vol. 9, no. 1, pp. 67–70.

    Google Scholar 

  16. Rajmohan, R., Pajany, M., Rajesh, R., Raghu Raman, D., and Prabu, U., Smart paddy crop disease identification and management using deep convolution neural network and SVM classifier, Int. J. Pure Appl. Math., 2018, vol. 118, no. 15, pp. 255–264.

    Google Scholar 

  17. Athanikar, G. and Badar, P., Potato leaf diseases detection and classification system, Int. J. Comput. Sci. Mobile Comput., 2016, vol. 5, no. 2, pp. 76–88.

    Google Scholar 

  18. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., and Stefanovic, D., Deep neural networks based recognition of plant diseases by leaf image classification, Comput. Intell. Neurosci., 2016, vol. 2016.

  19. Sobkowiak, B., Zastosowanie Technik Analizy Obrazu do Wczesnego Wykrywania Zarazy Ziemnechanej w Warynkach Polowych. Praca nie Publicowana, Poznan: PIMR, 2007.

    Google Scholar 

  20. Nikolenko, S., Kadurin, A., and Archangelskaya, E., Glubokoe obuchenie (Deep Learning), Saint Petersburg: Piter, 2018.

  21. Tensorflow API documentation. https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits_v2. Accessed September 28, 2018.

  22. Kingma, D.P. and Jimmy Lei Ba, Adam: A Method for Stochastic Optimization, CoRR, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ganchenko or A. Doudkin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganchenko, V., Doudkin, A. Agricultural Vegetation Monitoring Based on Aerial Data Using Convolutional Neural Networks. Opt. Mem. Neural Networks 28, 129–134 (2019). https://doi.org/10.3103/S1060992X1902005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X1902005X

Keywords:

Navigation