Skip to main content
Log in

A differential image compression method using adaptive parameterized extrapolation

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

The paper deals with an image compression method using differential pulse-code modulation (DPCM) with an adaptive extrapolator capable of adjusting itself to local distinctions of image contours (boundaries). A negative effect of quantization on the optimization of the adaptive extrapolator is investigated. Even so the experiment has shown that the use of an adaptive extrapolator is more effective than the use of prototypes. We have studied the method as a whole with close consideration given to the coding of the quantized signal. The maximal error criterion and a Waterloo grey set of real patterns are used to compare the method with the JPEG technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C., Hyperspectral Data Processing: Algorithm Design and Analysis, Wiley Press, 2013, 1164 p.

    Google Scholar 

  2. Sayood, K., Introduction to Data Compression. The Morgan Kaufmann Series in Multimedia Information and Systems, 4 ed., 2012, p. 743.

    Google Scholar 

  3. Salomon, D., Data Compression, The Complete Reference, 4 ed., Springer-Verlag, 2007, 1118 p.

    Google Scholar 

  4. Vatolin, D., Data Compression Methods, Archiver designs, image and video compression, Vatolin, D., Ratushnyak, A., Smirnov, M., and Yukin, V., Ed., DIALOG-MIFI, 2002, 384 p.

    Google Scholar 

  5. Woods, E., Digital Image Processing, 3 ed., Woods, E. and Gonzalez, R., Ed., Prentice Hall, 2007, 976 p.

    Google Scholar 

  6. Pratt, W., Digital Image Processing, 4 ed., Wiley, 2007, 807 p.

    Google Scholar 

  7. Woon, W.M., Achieving high data compression of self-similar satellite images using fractal, Woon, W.M., Ho, A.T.S., Yu, T., Tam, S.C., Tan, S.C., and Yap, L.T., Ed., Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2000, pp. 609–611.

    Google Scholar 

  8. Gupta, V., Enhanced image compression using wavelets, Gupta, V., Sharma, V., and Kumar, A., Eds., Int. J. Res. Eng. Sci. (IJRES), 2014, vol. 2, no. 5, pp. 55–62.

    Google Scholar 

  9. Li, J., Image Compression: The Mathematics of JPEG-2000, Modern Signal Processing, MSRI Publications, 2003, vol. 46, pp. 185–221.

    MathSciNet  MATH  Google Scholar 

  10. Plonka, G. and Tasche, M., Fast and numerically stable algorithms for discrete cosine transforms, Plonka, G. and Tasche, M., Eds., Linear Algebra and Its Appl., 2005, vol. 394, no. 1, pp. 309–345.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wallace, G., The JPEG still picture compression standard, Commun. ACM, 1991, vol. 34, no. 4, pp. 30–44.

    Article  Google Scholar 

  12. Ebrahimi, F., JPEG vs. JPEG2000: An objective comparison of image encoding quality, Ebrahimi, F, Chamik, M., and Winkler, S., Proceedings of SPIE Applications of Digital Image Processing XXVII, 2004, vol. 5558, pp. 300–308.

    Article  Google Scholar 

  13. Gashnikov, M., Interpolation for hyperspectral images compression, CEUR Workshop Proceedings, 2016, vol. 1638, pp. 327–333.

    Google Scholar 

  14. Gashnikov, M., Development and investigation of a hierarchical compression algorithm for storing hyperspectral images, Gashnikov, M.V. and Glumov, N.I., Eds., Opt. Mem. Neural Networks (Allerton Press), 2016, vol. 25, no. 3, pp. 168–179.

    Article  Google Scholar 

  15. Gashnikov, M.V., Adaptive parametrized predictor for differential image compression, Gashnikov, M.V. and Mullina, S.F., Eds., Proc. of the International Conf. “Informational Technologies and Nanotechnologies”, Samara, 2015, pp. 64–67.

    Google Scholar 

  16. Efimov, V.M., Evaluation of the lossless hierarchical and line-by-line grey image compression algorithms efficiency, Efimov, V.M. and Kolesnikov, A.N., Thesis at the third conf. “Pattern Recognition and Image Analysis: New Informational Technologies”, Nizhny Novgorod, 1997, Part I, pp. 157–161.

    Google Scholar 

  17. Lin, S., Error Control Coding: Fundamentals and Applications, 2nd ed., Lin, S. and Costello, D., New Jersey: Prentice-Hall,Inc. Englewood Cliffs, 2004, 1260 p.

    Google Scholar 

  18. Chang, C., Hyperspectral Data Exploitation: Theory and Applications, Wiley-Interscience, 2007, 440 p.

    Google Scholar 

  19. Gashnikov, M.V., Hierarchical GRID interpolation under hyperspectral images compression, Gashnikov, M.V. and Glumov, N.I., Opt. Mem. Neural Networks (Inform. Optics) (Allerton Press), 2014, vol. 23, no. 4, pp. 246–253.

    Article  Google Scholar 

  20. Borengasser, M., Hyperspectral Remote Sensing, Principles and Applications, Borengasser, M., Hungate, W., and Watkins, R., CRC Press, 2004, 128 p.

    Google Scholar 

  21. Waterloo Grey Set, University of Waterloo Fractal coding and analysis group: Mayer Gregory Image Repository. http://links. uwaterloo.ca/Repository.htm. Cited December 19, 2016.

    Google Scholar 

  22. Gashnikov, M.V., Onboard processing of hyperspectral data in the remote sensing systems based on hierarchical compression, Gashnikov, M.V. and Glumov, N.I., Comput. Opt., 2016, vol. 40, no. 4, pp. 543–551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gashnikov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashnikov, M.V. A differential image compression method using adaptive parameterized extrapolation. Opt. Mem. Neural Networks 26, 137–144 (2017). https://doi.org/10.3103/S1060992X17020023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X17020023

Keywords

Navigation