Skip to main content
Log in

Near-field propagation of vortex beams: Models and computation algorithms

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

We have analyzed the diffraction of a plane wave and a vortex beam on a circular micro-aperture in the near field (a few wavelengths away from the source) using different models and computation algorithms: the Reyleigh-Sommerfeld integral, plane wave expansion method, and finite-difference time-domain (FDTD) method.

Comparison of the models showed that the plane wave expansion method modified by the Mansuripur matrix allows us to avoid the singularity in the region of high spectral frequencies and take into account all components of the vector field when the incident beam is bounded with an aperture. Comparison of the computation algorithms in respect to accuracy and computation time showed that it is possible to use integral methods even if the distance from the optical element is less than a wavelength.

The simulation of the near-field diffraction of a vortex beam on a circular micro-aperture allowed us to discover oscillations of the vortex beam in the central shade area: the size of the light vortex oscillates as the beam propagates and can be much smaller than it is predicted by the paraxial theory. In addition, the expressions obtained for vortex beams show that near the axis the total intensity will not be zero when the order of the vortex is |m| ≤ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z., Zhang, N., and Yuan, X.-C., High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication, Optics Express, 2011, vol. 19, no. 2, pp. 482–492.

    Article  Google Scholar 

  2. Wang, J., Yang, J.-Y., Fazal, I. M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., and Willner, A.E., Terabit free-space data transmission employing orbital angular momentum multiplexing, Nature Photonics, June 2012.

    Google Scholar 

  3. Torres, J. P., Multiplexing twisted light, Nature Photonics, June 2012.

    Google Scholar 

  4. Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E., and Ramachandran, S., Terabit-scale orbital angular momentum mode division multiplexing in fibers, Science, 2013, vol. 340, no. 6140, pp. 1545–1548.

    Article  Google Scholar 

  5. Khonina, S.N., Kazanskiy, N.L., and Soifer, V.A., Optical vortices in a fiber: mode division multiplexing and multimode self-imaging, in Recent Progress in Optical Fiber Research, Yasin, M.S., Harun, W., and Arof, H., Eds., Croatia: INTECH Publisher, 2012.

    Google Scholar 

  6. Martinez-Herrero, R., Mejias, P.M., Bosch, S., and Carnicer, A., Vectorial structure of nonparaxial electromagnetic beams, J. Opt. Soc. Am. A, 2001, vol. 18, pp. 1678–1680.

    Article  Google Scholar 

  7. Ciattoni, A., Crosignani, B., and Porto, P.D., Vectorial analytical description of propagation of a highly non-paraxial beam, Opt. Commun., 2002, vol. 202, pp. 17–20.

    Article  Google Scholar 

  8. Guha, Sh. and Gillen, G.D., Description of light propagation through a circular aperture using nonparaxial vector diffraction theory, Optics Express, 2005, vol. 13, no. 5, pp. 1424–1447.

    Article  Google Scholar 

  9. Guo, H., Chen, J., and Zhuang, S., Vector plane wave spectrum of an arbitrary polarized electromagnetic wave, Optics Express, 2006, vol. 14, no. 6, pp. 2095–2100.

    Article  Google Scholar 

  10. Deng, D. and Guo, Q., Analytical vectorial structure of radially polarized light beams, Optics Letters, 2007, vol. 32, no. 18, pp. 2711–2713.

    Article  Google Scholar 

  11. Anokhov, S.P., Plane wave diffraction by a perfectly transparent half-plane, J. Opt. Soc. Am. A, 2007, vol. 24, no. 9, pp. 2493–2498.

    Article  Google Scholar 

  12. Kovalev, A.A. and Kotlyar, V.V., Nonparaxial vectorial diffraction of the Gaussian beam by a spiral phase plate, Computer Optics, 2007, vol. 31, no. 4, pp. 19–22 [in Russian].

    Google Scholar 

  13. Wu, G., Lou, Q., and Zhou, J., Analytical vectorial structure of hollow Gaussian beams in the far eld, Optics Express, 2008, vol. 16, no. 9, pp. 6417–6424.

    Article  Google Scholar 

  14. Zhou, G., The analytical vectorial structure of a nonparaxial Gaussian beam close to the source, Optics Express, 2008, vol. 16, no. 6, pp. 3504–3514.

    Article  Google Scholar 

  15. Delen, N. and Hooker, B., Verification and comparison of a fast Fourier transform-based full diffraction method for tilted and offset planes, Applied Optics, 2001, vol. 40, no. 21, pp. 3525–3531.

    Article  Google Scholar 

  16. Cooper, I.J., Sheppard, C.J.R., and Sharma, M., Numerical integration of diffraction integrals for a circular aperture, Optik, 2002, vol. 113, no. 7, pp. 293–298.

    Article  Google Scholar 

  17. Duan, K. and Lu, B., A comparison of the vectorial nonparaxial approach with Fresnel and Fraunhofer approximations, Optik, 2004, vol. 115, no. 5, pp. 218–222.

    Article  Google Scholar 

  18. Cooper, I.J., Sheppard, C.J.R., and Roy, M., The numerical integration of fundamental diraction integrals for converging polarized spherical waves using a two-dimensional form of Simpson’s 1/3 Rule, Journal of Modern Optics, 2005, vol. 52, no. 8, pp. 1123–1134.

    Article  MATH  Google Scholar 

  19. Veerman, J.A.C., Rusch, J.J., and Paul Urbach, H., Calculation of the Rayleigh-Sommerfeld diffraction integral by exact integration of the fast oscillating factor, J. Opt. Soc. Am. A, 2005, vol. 22, no. 4, pp. 636–646.

    Article  Google Scholar 

  20. Zhao, Z., Duan, K., and Lu, B., Focusing and diffraction by an optical lens and a small circular aperture, Optik, 2006, vol. 117, pp. 253–258.

    Article  Google Scholar 

  21. Wang, X., Fan, Z., and Tang, T., Numerical calculation of a converging vector electromagnetic wave diffracted by an aperture by using Borgnis potentials. I. General theory, J. Opt. Soc. Am. A, 2006, vol. 23, no. 4, pp. 872–877.

    Article  MathSciNet  Google Scholar 

  22. Shen, F. and Wang, A., Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula, Applied Optics, 2006, vol. 45, no. 6, pp. 1102–1110.

    Article  Google Scholar 

  23. Kotlyar, V.V., Kovalev, A.A., and Stafeev, S.S., Sharp focus area of radially-polarized Gaussian beam by propagation through an axicon, Prog. in Electr. Res. C, 2008, vol. 5, pp. 35–43.

    Article  Google Scholar 

  24. Nascov, V. and Logof tu, P.C., Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution, Applied Optics, 2009, vol. 48, no. 22, pp. 4310–4319.

    Article  Google Scholar 

  25. Matsushima, K. and Shimobaba, T., Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields, Optics Express, 2009, vol. 17, no. 22, pp. 19662–19673.

    Article  Google Scholar 

  26. Ustinov, A.V., The fast way for calculation of first class Rayleigh-Sommerfeld integral, Computer Optics, 2009, vol. 33, no. 4, pp. 412–419 [in Russian].

    MathSciNet  Google Scholar 

  27. Osterberg, H. and Smith, L.W., Closed solutions of Rayleigh’s diffraction integral for axial points, J. Opt. Soc. Am., 1961, vol. 51, pp. 1050–1054.

    Article  MathSciNet  Google Scholar 

  28. Wolf, E. and Marchand, E.W., Comparison of the Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction at an aperture, J. Opt. Soc. Am., 1964, vol. 54, no. 5, pp. 587–594.

    Article  MathSciNet  Google Scholar 

  29. Gravelsaeter, T. and Stamnes, J.J., Diffraction by circular apertures. 1: Method of linear phase and amplitude approximation, Applied Optics, 1982, vol. 21, no. 20, pp. 3644–3651.

    Article  Google Scholar 

  30. Sheppard, C.J.R. and Hrynevych, M., Diffraction by a circular aperture: a generalization of Fresnel diffraction theory, J. Opt. Soc. Am. A, 1992, vol. 9, no. 2, pp. 274–281.

    Article  Google Scholar 

  31. Mielenz, K.D., Optical diffraction in close proximity to plane apertures. I. Boundary-value solutions for circular apertures and slits, J. Res. Natl. Inst. Stand. Technol., 2002, vol. 107, pp. 355–362.

    Article  Google Scholar 

  32. Romero, J.A. and Hernández, L., Vectorial approach to Huygens’s principle for plane waves: circular aperture and zone plates, J. Opt. Soc. Am. A, 2006, vol. 23, no. 5, pp. 1141–1145.

    Article  Google Scholar 

  33. Romero, J.A. and Hernández, L., Diffraction by a circular aperture: an application of the vectorial theory of Huygens’s principle in the near eld, J. Opt. Soc. Am. A, 2008, vol. 25, no. 8, pp. 2040–2043.

    Article  Google Scholar 

  34. Li, J., Zhu, S., and Lu, B., The rigorous electromagnetic theory of the diffraction of vector beams by a circular aperture, Opt. Commun., 2009, vol. 282, pp. 4475–4480.

    Article  Google Scholar 

  35. Born, M. and Wolf, E., Principles of Optics, 6th ed., Oxford: Pergamon, 1980, Chap. 8.3.

    Google Scholar 

  36. Andrews, C.L., Diffraction pattern in a circular aperture measured in the microwave region, J. Appl. Phys., 1950, vol. 21. pp. 761–767.

    Article  Google Scholar 

  37. Silver, S., Microwave aperture antennas and diffraction theory, J. Opt. Soc. Am., 1962, vol. 52, pp. 131–139.

    Article  MathSciNet  Google Scholar 

  38. Totzeck, M., Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects, J. Opt. Soc. Am. A, 1991, vol. 8, no. 1, pp. 27–32.

    Article  Google Scholar 

  39. Tsoy, V.I. Melnikov, L.A., The use of Kirchho approach for the calculation of the near eld amplitudes of electromagnetic eld, Optics Communications, 2005, vol. 256, pp. 1–9.

    Article  Google Scholar 

  40. Luneburg, R.K., Mathematical Theory of Optics, Berkeley, California: University of California Press, 1966.

    Google Scholar 

  41. Carter, W.H., Electromagnetic field of a Gaussian beam with an elliptical cross section, J. Opt. Soc. Am. A, 1972, vol. 62, no. 10, pp. 1195–1201.

    Article  Google Scholar 

  42. Agrawal, G.P. and Pattanayak, D.N. Gaussian beam propagation beyond the paraxial approximation, J. Opt. Soc. Am. A, 1979, vol. 69, no. 4, pp. 575–578.

    Article  Google Scholar 

  43. Marathay, A.S. and McCalmont, J.F., On the usual approximation used in the Rayleigh-Sommerfeld diffraction theory, J. Opt. Soc. Am. A, 2004, vol. 21, pp. 510–516.

    Article  Google Scholar 

  44. Khonina, S.N., Ustinov, A.V., Volotovsky, S.G., and Ananin, M.A., Fast calculation algorithms for diffraction of radially-vortical laser fields on the microaperture, Izvest. SNC RAS, 2010, vol. 12, no. 3, pp. 15–25 [in Russian].

    Google Scholar 

  45. Mansuripur, M., Certain computational aspects of vector diffraction problems, J. Opt. Soc. Am. A, 1989, vol. 6, no. 5, pp. 786–805.

    Article  Google Scholar 

  46. Lin, Y., Hu, J., and Wu, K., Vector fuzzy control iterative algorithm for the design of sub-wavelength diffractive optical elements for beam shaping, Optics Communications, 2009, vol. 282, pp. 3210–3215.

    Article  Google Scholar 

  47. Soskin, M.S. and Vasnetsov, M.V., Singular optics, Progress in Optics, 2001, vol. 42, pp. 219–276.

    Article  Google Scholar 

  48. Desyatnikov, A.S., Torner, L., and Kivshar, Y.S., Optical vortices and vortex solitons, Progress in Optics, 2005, vol. 10, p. 47.

    Google Scholar 

  49. Soifer, V.A., Kotlyar, V.V., and Khonina, S.N., Optical microparticle manipulation: advances and new possibilities created by diffractive optics, Physics of Particles and Nuclei, 2004, vol. 35, no. 6, pp. 733–766.

    Google Scholar 

  50. Dienerowitz, M., Mazilu, M., Reece, P.J., Krauss, T.F., and Dholakia, K., Optical vortex trap for resonant confinement of metal nanoparticles, Opt. Express, 2008, vol. 16, no. 7, pp. 4991–4999.

    Article  Google Scholar 

  51. Tychinskii, V.P., Super-resolution and singularities in phase images, Uspekhi Fizicheskikh Nauk, 2008, vol. 178, no. 11, pp. 1205–1214.

    Article  Google Scholar 

  52. Wang, W., Ishii, N., Hanson, S.G., Miyamoto, Y., and Takeda, M., Phase singularities in analytic signal of white-light speckle pattern with application to micro-displacement measurement, Opt. Commun., 2005, vol. 248, pp. 59–68.

    Article  Google Scholar 

  53. Wang, W., Yokozeki, T., Ishijima, R., Wada, A., Miyamoto, Y., and Takeda, M., Optical vortex metrology for nanometric speckle displacement measurement, Opt. Express, 2006, vol. 14, no. 1, pp. 120–127.

    Article  Google Scholar 

  54. Singh, R.K., Senthilkumaran, P., and Singh, K., Structure of a tightly focused vortex beam in the presence of primary coma, Optics Communications, 2009, vol. 282, pp. 1501–1510.

    Article  Google Scholar 

  55. Kotlyar, V.V., Kovalev, A.A., Khonina, S.N., Skidanov, R.V., Soifer, V.A., Elfstrom, H., Tossavainen, N., and Turunen, J., Diffraction of conic and Gaussian beams by a spiral phase plate, Appl. Opt., 2006, vol. 45, no. 12, pp. 2656–2665.

    Article  Google Scholar 

  56. Kotlyar, V.V., Kovalev, A.A., Skidanov, R.V., Moiseev, O.Yu., and Soifer, V.A., Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate, J. Opt. Soc. Am. A, 2007, vol. 24, no. 7, pp. 1955–1964.

    Article  MathSciNet  Google Scholar 

  57. Mei, Z. and Zhao, D., Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams, Opt. Express, 2007, vol. 15, pp. 11942–11951.

    Article  Google Scholar 

  58. Kovalev, A.A. and Kotlyar, V.V., Nonparaxial vectorial diffraction of the Gaussian beam by a spiral phase plate, Computer Optics, 2007, vol. 31, no. 4, pp. 19–22 [in Russian].

    Google Scholar 

  59. Kotlyar, V. and Kovalev, A., Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization, J. Opt. Soc. Am. A, 2010, vol. 27, no. 3, pp. 372–380.

    Article  Google Scholar 

  60. Kotlyar, V.V., Almazov, A.A., Khonina, S.N., Soifer, V.A., Elfstrom, H., and Turunen, J., Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate, J. Opt. Soc. Am. A, 2005, vol. 22, no. 5, pp. 849–861.

    Article  MathSciNet  Google Scholar 

  61. Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, 1968, Chap. 3.

    Google Scholar 

  62. Vinogradova, M.B., Rudenko, O.V., and Sukhorukov, A.P., Wave Theory, 2nd ed., Moscow: “Nauka” Publisher, 1979 [in Russian].

    Google Scholar 

  63. Balalayev, S.A. and Khonina, S.N., Realisation of fast algorithm of Kirchhoff’s diffraction integral on an example of Bessel modes, Computer Optics, 2006, vol. 30, pp. 69–73 [in Russian].

    Google Scholar 

  64. Gradshteyn, S. and Ryzhik, I.M., Table of Integrals, Series, and Products, Elsevier, 2007.

    MATH  Google Scholar 

  65. Zhang, Y., Wang, L., and Zheng, C., Vector propagation of radially polarized Gaussian beams diffracted by an axicon, J. Opt. Soc. Am. A, 2005, vol. 22, no. 11, pp. 2542–2542.

    Article  MathSciNet  Google Scholar 

  66. Helseth, L.E., Optical vortices in focal regions, Opt. Commun., 2004, vol. 229, pp. 85–91.

    Article  Google Scholar 

  67. Prudnikov, A.P., Brychkov, Yu.A., and Marychev, O.I., Integrals and Series. Special Functions, Moscow: “Nauka” Puiblishers, 1983 [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Khonina.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonina, S.N., Ustinov, A.V., Kovalyov, A.A. et al. Near-field propagation of vortex beams: Models and computation algorithms. Opt. Mem. Neural Networks 23, 50–73 (2014). https://doi.org/10.3103/S1060992X14020027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X14020027

Keywords

Navigation