Skip to main content
Log in

Subwavelength focusing with a Mikaelian planar lens

  • This Issue is Dedicated to Memory of Academician Andrey L. Mikaelyan
  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

We show that an arbitrary TE-polarized light field propagating in a Mikaelian secant (MS) planar lens can be decomposed into modes described by the Jacobi polynomials. This light field will be periodically repeated at the Talbot length and focused with a half-Talbot length period. An analytical expression for the width of the focal spot has been obtained. The MS lens allows obtaining a focal spot of width equal to the diffraction limit in the medium. The MS lens has been fabricated as a planar photonic crystal lens in a silicon film for wavelength 1.55 μm, and its focusing properties have been demonstrated by visible light (532 nm) interference fringes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikaelian, A.L., Application of Stratified Medium for Waves Focusing, Dokl. Akad. Nauk SSSR, 1951, vol. 81, pp. 569–571.

    Google Scholar 

  2. Feld, Y.N. and Benenson, L.S., Antenna and Fiber Design, Izdatelstvo VVIA imeni Zhukovskogo, 1959, vol. 2.

  3. Zelkin, E.G. and Petrova, R.A., Lens Antennas, Moscow: Sov. Radio, 1974.

    Google Scholar 

  4. Zhuk, M.S. and Molotschkov, U.B., The Design of Scanning and Widebandwidth Lens Antennas and Fibers, Moscow: Energia, 1973.

    Google Scholar 

  5. Mikaelian, A.L. and Prokhorov, A.M., Self-Focusing Media with Variable Index of Refraction, in Progress in Optics XVII, Wolf, E., Ed., Amsterdam: North-Holland, 1980, pp. 283–346.

    Google Scholar 

  6. Mikaelian, A.L., General Method of Inhomogeneous Media Calculation by the Given Ray Traces, Dokl. Acad. Nauk, 1952, vol. 83, no. 2, p. 219.

    Google Scholar 

  7. Mikaelian, A.L., Method of Calculation of Inversion Problem of Geometrical Optics, Dokl. Acad. Nauk, 1952, vol. 86, no. 5, p. 963.

    Google Scholar 

  8. Mikaelian, A.L., Using of Coordinate System for Calculation of Media Characteristics for the Given Ray Traces, Dokl. Acad. Nauk, 1952, vol. 86, no. 6, p. 1101.

    Google Scholar 

  9. Rawson, G., Herriott, D.R., and MacKenne, J., Analysis of Refractive Index Distributions in Cylindrical, Gradient-Index Glass Rods Used as Image Relays, Appl. Opt., 1970, vol. 3, pp. 753–759.

    Article  Google Scholar 

  10. Rawson, G., Herriott, D.R., and MacKenne, J., Gradient-Index Tapered Hyperbolic Second Planar Waveguide for Focusing, Collimation and Beam-Size Control, J. Opt. Soc. Am. A, 1997, vol. 14, pp. 1754–1759.

    Google Scholar 

  11. Linares, J. and Gomez-Reino, C., Optical Propagator in a Graded-Index Medium with a Hyperbolic Secant Refractive-Index Profile, Appl. Opt., 1994, vol. 33, pp. 3427–3431.

    Article  Google Scholar 

  12. Streifer, W. and Kurz, C.N., Scalar Analysis of Radially Inhomogeneous Guiding Media, J. Opt. Soc. Am., 1967, vol. 57, pp. 779–786.

    Article  Google Scholar 

  13. Kornhauser, E.T., Streifer, W., and Kurz, C.N., Modal Solution of a Point Source in a Strongly Focusing Medium, Radio Sci., 1967, vol. 2, pp. 299–310.

    Google Scholar 

  14. Silberberg, Y. and Levy, V., Modal Treatment of an Optical Filter with a Modified Hyperbolic Secant Index Distribution, J. Opt. Soc. Am. A, 1979, vol. 69, pp. 960–963.

    Article  Google Scholar 

  15. Van Duin, C.A., Boersma, J., and Sluijter, F.W., TM-Modes in a Planar Optical Waveguide with a Graded Index of the Symmetric Epstein Type, Wave Motion, 1986, vol. 8, pp. 175–190.

    Article  MATH  Google Scholar 

  16. Hewak, D.W. and Lit, J.W.Y., Solution Deposited Optical Waveguide Lens, Appl. Opt., 1989, vol. 28, pp. 4190–4198.

    Article  Google Scholar 

  17. Rivas-Moscoso, J.M., Nieto, D., Gomez-Reino, C., and Fernandez-Pousa, C.R., Focusing of Light by Zone Plates in Selfoc Gradient-Index Lenses, Opt. Lett., 2003, vol. 28, pp. 2180–2182.

    Article  Google Scholar 

  18. Wang, X., Ren, Z.F., and Kempe, K., Unrestricted Superlensing in a Triangular Twodimensional Photonic Crystal, Opt. Express, 2004, vol. 12, pp. 2919–2924.

    Article  Google Scholar 

  19. Wu, Q., Gibbons, J.M., and Park, W., Graded Negative Index Lens by Photonic Crystal, Opt. Express, 2008, vol. 16, no. 21, pp. 16 941–16 949.

    Google Scholar 

  20. Minin, I.V., Minin, O.V., Triandafilov, Y.R., and Kotlyar, V.V., Subwavelength Diffractive Photonic Crystal Lens, Prog. Electromag. Res. B, 2008, vol. 7, pp. 257–264.

    Article  Google Scholar 

  21. Minin, I.V., Minin, O.V., Triandafilov, Y.R., and Kotlyar, V.V., A Photonic Crystal Mikaelian Lens, Opt. Mem. Neural Networks, 2008, vol. 17, pp. 1–7.

    Article  Google Scholar 

  22. Kameda, S., Mizutani, A., and Kikuta, H., Numerical Study on a Micro Prizm and Micro Lenses with Metal-Dielectric Multilayered Structures, J. Opt. Soc. Am. A, 2010, vol. 27, pp. 749–756.

    Article  Google Scholar 

  23. Schwarz, J.J., Stavrakis, S., and Quake, S.R., Colloidal Lenses Allow High-Temperature Single-Molecule Imaging and Improve Fluorophore Photostability, Nature Nanotechnology, 2010, vol. 5, pp. 127–132.

    Article  Google Scholar 

  24. Kotlyar, M.I., Triandafilov, Y.R., Kovalev, A.A., Soifer, V.A., Kotlyar, M.V., and O’Faolain, L., Photonic Crystal Lens for Coupling Two Waveguides, Appl. Opt., 2009, vol. 48, pp. 3722–3730.

    Article  Google Scholar 

  25. Handbook of Mathematical Functions, Abramowitz, M., and Stegun, I.A., Eds., Washington: National Bureau of Standards, 1964.

    MATH  Google Scholar 

  26. Prudnikov, A.P., Brychkov, Yu.A., and Marychev, O.I., Integrals and Series. Special Functions, Moscow: Nauka Puiblishers, 1983 [in Russian].

    MATH  Google Scholar 

  27. Prudnikov, A.P., Brychkov, Yu.A., and Marychev, O.I., Integrals and Series, Moscow: Nauka Puiblishers, 1981 [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kovalev.

About this article

Cite this article

Kotlyar, V.V., Kovalev, A.A. & Soifer, V.A. Subwavelength focusing with a Mikaelian planar lens. Opt. Mem. Neural Networks 19, 273–278 (2010). https://doi.org/10.3103/S1060992X1004003X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X1004003X

Keywords

Navigation