Skip to main content

Optimal Feedback Control for a Thermoviscoelastic Model of the Motion of Water Polymer Solutions

Abstract

We study an optimal feedback control problem for an initial boundary value problem of a thermoviscoelastic model describing the motion of weakly concentrated water polymer solutions in the presence of dependence of the viscosity on the temprature. We prove the existence of an optimal solution minimizing to a given bounded lower semicontinuous quality functional. For proving the existence of an optimal solution, we use the topological approximation method for studying problems in hydrodynamics.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids (Nauka, Novosibirsk, 1983; North–Holland, Amsterdam, 1990).

    MATH  Google Scholar 

  2. 2.

    J. P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory (Springer-Verlag; Berlin etc., 1984).

    Book  MATH  Google Scholar 

  3. 3.

    Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V. V. Obukhovskiĭ, Introduction to the Theory of Multi-Valued Mappings and Differential Inclusions (Librokom, Moscow, 2011) [in Russian].

    MATH  Google Scholar 

  4. 4.

    H. Choi, R. Temam, P. Moin, and J. Kim, “Feedback control for unsteady flow and its application to the stochastic Burgers equation,” J. Fluid Mech. 253, 509 (1993).

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    A. F. Filippov, “On certain questions in the theory of optimal control,” Vestn. Mosk. Univ., Ser. Mat. Mekh. Astron. Fiz. Khim. 14 (2), 25 (1959) [J. Soc. Ind. Appl.Math., Ser. A, Control 1, 76 (1962)].

    Google Scholar 

  6. 6.

    A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, (Nauchnaya Kniga, Novosibirsk, 1999; AMS, Providence, RI, 2000).

    Book  MATH  Google Scholar 

  7. 7.

    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Nauka, Moscow, 1970; Gordon and Breach Science Publishers, New York–London–Paris, 1969).

    Google Scholar 

  8. 8.

    A. P. Oskolkov, “Some quasilinear systems occurring in the study of the motion of viscous fluids,” Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 52, 128 (1975) [J. Sov.Math. 9, 765 (1978)].

    MATH  Google Scholar 

  9. 9.

    J. Simon, “Compact sets in the space L p (0, T; B),” Ann. Mat. Pura Appl. 146, 65 (1987).

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis (AMS, Providence, RI, 2001; Mir, Moscow, 1981).

    Google Scholar 

  11. 11.

    I. I. Vorovich and V. I. Yudovich, “Steady flow of a viscous incompressible fluid,” Mat. Sb. (N.S.) 53(95) (4) 393 (1961).

    Google Scholar 

  12. 12.

    A. V. Zvyagin, “An optimal control problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions,” Sib. Mat. Zh. 54, 807 (2013) [Sib. Math. J. 54, 640 (2013)].

    MathSciNet  Article  Google Scholar 

  13. 13.

    A. V. Zvyagin, “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative,” Nonlinear Anal., TheoryMethods Appl. Ser. A 90, 70 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    A. V. Zvyagin, “Solvability of the stationary mathematical model of a non-Newtonian fluid motion with the objective derivative,” Fixed Point Theory 15, 623 (2014).

    MathSciNet  MATH  Google Scholar 

  15. 15.

    A. V. Zvyagin, “Study of Solvability of a Thermoviscoelastic Model Describing the Motion of Weakly ConcentratedWater Solutions of Polymers,” Sib. Mat. Zh. 59, 1066 (2018) [Sib.Math. J. 59, 843 (2018)].

    Google Scholar 

  16. 16.

    A. V. Zvyagin and V. P. Orlov, “Solvability of the thermoviscoelasticity problem for linearly elastically retarded Voigt fluid,” Mat. Zametki 97, 681 (2015) [Math. Notes 97, 694 (2015)].

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    V. G. Zvyagin, “Topological approximation approach to study of mathematical problems of hydrodynamics,” CMFD, 46, 92 (2012) [J.Math. Sci., 201, 830 (2014)].

    Google Scholar 

  18. 18.

    V. Zvyagin, V. Obukhovskii, and A. Zvyagin, “On inclusions with multivalued operators and their applications to some optimization problems,” J. Fixed Point Theory Appl. 16, 27 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    V. G. Zvyagin and V. P. Orlov, “On certain mathematical models in continuum thermomechanics,” J. Fixed Point Theory Appl. 15, 3 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    V. G. Zvyagin and V. P. Orlov, “Solvability of a parabolic problem with non-smooth data,” J. Math. Anal. Appl. 453, 589 (2017).

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    V. G. Zvyagin and M. V. Turbin, Mathematical Problems of the Hydrodynamics of Viscoelastic Media, (URSS, Moscow, 2012) [in Russian].

    Google Scholar 

  22. 22.

    V. G. Zvyagin and M. V. Turbin, “Optimal feedback control in the mathematical model of low concentrated aqueous polymer solutions,” J. Optim. Theory Appl. 148, 146 (2011).

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. G. Zvyagin or A. V. Zvyagin.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Zvyagin, A.V. Optimal Feedback Control for a Thermoviscoelastic Model of the Motion of Water Polymer Solutions. Sib. Adv. Math. 29, 137–152 (2019). https://doi.org/10.3103/S1055134419020044

Download citation

Keywords

  • optimal feedback control
  • existence theorem
  • thermoviscoelasticity
  • non-Newtonian hydrodynamics