Skip to main content
Log in

On Topology of Manifolds Admitting a Gradient-Like Flow with a Prescribed Non-Wandering Set

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

We study relations between the structure of the set of equilibrium points of a gradient-like flow and the topology of the support manifold of dimension 4 and higher. We introduce a class of manifolds that admit a generalized Heegaard splitting. We consider gradient-like flows such that the non-wandering set consists of exactly μ node and ν saddle equilibrium points of indices equal to either 1 or n — 1. We show that, for such a flow, there exists a generalized Heegaard splitting of the support manifold of genius \(g=\frac{\nu-\mu+2}{2}\). We also suggest an algorithm for constructing gradientlike flows on closed manifolds of dimension 3 and higher with prescribed numbers of node and saddle equilibrium points of prescribed indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andronov, and L. S. Pontryagin, “Syste'mes grossiers,” Dokl. Akad. Nauk SSSR 14, 247 (1937) [in Russian].

    MATH  Google Scholar 

  2. C. Bonatti, V. Grines, V. Medvedev, and E. Pecou, “Three-manifolds admitting Morse-Smale diffeomor phisms without heteroclinic curves,” Topology Appl. 117, 335 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. J. Daverman, and G. A. Venema, Embeddings in Manifolds (Amer. Math. Soc., Providence, RI, 2009).

    Google Scholar 

  4. V. Z. Grines, E. A. Gurevich, and O. V. Pochinka, “Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersections,” Probl. Mat. Anal. 79, 73 (2015) [J. Math. Sci. 208, 81 (2015)].

    MATH  Google Scholar 

  5. V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, “New relations for Morse-Smale systems with trivially embedded one-dimensional separatrices,” Mat. Sb. 194, no. 7, 25 (2003) [Sb. Math. 194, 979 (2003)].

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, “On the structure of the ambient manifold for Morse-Smale systems without heteroclinic intersections,” Trudy Mat. Inst. Steklov 297, 201 (2017) [Proc. Steklov Inst. Math. 297, 179 (2017)].

    MathSciNet  MATH  Google Scholar 

  7. M. V. Hirsch, Differential Topology (Springer-verlag, New York-Heidelberg-Berlin, 1976).

    Book  MATH  Google Scholar 

  8. L. V. Keldysh, “Topological imbeddings in Euclidean space,” Trudy Mat. Inst. Steklov 81, 3 (1966) [Proc. Steklov Inst. Math. 81, 1 (1966)].

    MATH  Google Scholar 

  9. M. A. Kervaire, and J. W. Milnor, “Groups of homotopy spheres. I,” Ann. Math. (2) 77, 504 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. M. Lee, Introduction to Smooth Manifolds (Springer-Verlag, New York, 2012).

    Book  Google Scholar 

  11. Y. Matsumoto, An Introduction to Morse Theory (Amer. Math. Soc., Providence, RI, 2002).

    Google Scholar 

  12. J. W. Milnor, Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells (Princeton Univ. Press, Princeton, NJ, 1963).

    MATH  Google Scholar 

  13. J. W. Milnor, Topology from the Differentiable Viewpoint (The Univ. Press Virginia, Charlottesville, 1965).

    MATH  Google Scholar 

  14. S. Smale, “Morse inequalities for a dynamical system,” Bull. Amer. Math. Soc. 66, 43 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Smale, “On gradient dynamical systems,” Ann. Math. (2) 74, 199 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Smale, “Differentiable dynamical systems,” Bull. Amer. Math. Soc. 73, 747 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics. Part I (World Scientific, Singapore, 1998).

    Book  MATH  Google Scholar 

  18. V. S. Medvedev, and E. V. Zhuzhoma, “Morse-Smale systems with few non-wandering points,” Topology Appl. 160, 498 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev or E. V. Zhuzhoma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grines, V.Z., Gurevich, E.Y., Medvedev, V.S. et al. On Topology of Manifolds Admitting a Gradient-Like Flow with a Prescribed Non-Wandering Set. Sib. Adv. Math. 29, 116–127 (2019). https://doi.org/10.3103/S1055134419020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134419020020

Keywords

Navigation