Skip to main content

A Riemann-Hilbert Problem for the Moisil-Teodorescu System


In a bounded domain with smooth boundary in ℝ3 we consider the stationary Maxwell equations for a function u with values in ℝ3 subject to a nonhomogeneous condition (u, v)x = u0 on the boundary, where v is a given vector field and u0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. S. Agranovich, “Elliptic Boundary Value Problems,” In: Encyclopaedia of Mathematical Sciences 79 (Springer, Berlin, 1997), 1.

    Google Scholar 

  2. 2.

    A. Alsaedy and N Tarkhanov, “The method of Fischer-Riesz equations for elliptic boundary value problems,” J. of Complex Analysis 1, 1 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    A. Alsaedy and N Tarkhanov, “A Hilbert boundary value problem for generalised Cauchy-Riemann equations,” Advances in Applied Clifford Algebras 27, 931 (2017).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    A. P. Calderón, “Boundary value problems for elliptic equations,” In: “Outlines Joint Symposium PDE” (Novosibisrk, 1963), Acad. Sci. USSR, Siberian Branch,Moscow, 1963, 303.

    Google Scholar 

  5. 5.

    F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977).

    MATH  Google Scholar 

  6. 6.

    V. D. Kupradze, “Approximate solution of problems of mathematical physics,” Uspekhi Mat. Nauk 22, 59 (1967).

    MathSciNet  MATH  Google Scholar 

  7. 7.

    G. C. Moisil and N. Teodorescu, “Fonction holomorphic dans l’espace,” Bul. Soc. St. Cluj 6, 177 (1931).

    Google Scholar 

  8. 8.

    M. Picone and G. Fichera, “Neue funktional-analytische Grundlagen für die Existenzprobleme und Lösungsmethoden von Systemen linearer partieller Differentialgleichungen,” Monatsh. Math. 54, 188 (1950).

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    I. Stern, “Boundary value problems for generalized Cauchy-Riemann systems in the space,” In: Boundary value and initial value problems in complex analysis: Studies in complex analysis and its applications to partial differential equations, I (Halle, 1988), Pitman Res.NotesMath. Ser. 256, Longman Sci. Tech.,Harlow, 1991.

    Google Scholar 

  10. 10.

    I. Stern, “On the existence of Fredholm boundary value problems for generalized Cauchy-Riemann systems,” Complex Variables 21, 19 (1993).

    MathSciNet  MATH  Google Scholar 

  11. 11.

    I. Stern, “Direct methods for generalized Cauchy-Riemann systems in the space,” Complex Variables 23, 73 (1993).

    MathSciNet  MATH  Google Scholar 

  12. 12.

    E. J. Straube, “Harmonic and analytic functions admitting a distribution boundary value,” Ann. Scuola Norm. Super. Pisa 11, 559 (1984).

    MathSciNet  MATH  Google Scholar 

  13. 13.

    N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995.

    MATH  Google Scholar 

  14. 14.

    L. R. Volevich, “On the solvability of boundary value problems for general elliptic systems,” Mat. Sb. 68 (110), 373 (1965).

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. N. Polkovnikov.

Additional information

Original Russian Text © A.N. Polkovnikov and N. Tarkhanov, 2018, published in Matematicheskie Trudy, 2018, Vol. 21, No. 1, pp. 155–192.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polkovnikov, A.N., Tarkhanov, N. A Riemann-Hilbert Problem for the Moisil-Teodorescu System. Sib. Adv. Math. 28, 207–232 (2018).

Download citation


  • Dirac operator
  • Riemann-Hilbert problem
  • Fredholm operators