Skip to main content
Log in

Large Deviations of the Ergodic Averages: From Hölder Continuity to Continuity Almost Everywhere

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

For many dynamical systems that are popular in applications, estimates are known for the decay of large deviations of the ergodic averages in the case of Hölder continuous averaging functions. In the present article, we show that these estimates are valid with the same asymptotics in the case of bounded almost everywhere continuous functions. Using this fact, we obtain, in the case of such functions, estimates for the rate of convergence in Birkhoff’s ergodic theorem and for the distribution of the time of return to a subset of the phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Alves, J. M. Freitas, S. Luzzatto, and S. Vaienti, “From rates of mixing to recurrence times via large deviations,” Adv. Math. 228, 1203 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. F. Alves and D. Schnellmann, “Ergodic properties of Viana-like maps with singularities in the base dynamics,” Proc. Amer. Math. Soc. 141, 3943 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Araújo and A. I. Bufetov, “A large deviations bound for the Teichmüller flow on the moduli space of abelian differentials,” Ergodic Theory Dynam. Syst. 31, 1043 (2011).

    Article  MATH  Google Scholar 

  4. D. Azagra and J. Ferrera, “Regularization by sup-inf convolutions on Riemannian manifolds: An extension of Lasry–Lions theorem to manifolds of bounded curvature,” J. Math. Anal. Appl. 423, 994 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. H. Bauschke and P. L. Combettes, Convex Analysis andMonotoneOperator Theory inHilbert Spaces (Springer, Berlin, 2011).

    Book  Google Scholar 

  6. Y.M. Chung, “Large deviations on Markov towers,” Nonlinearity 24, 1229 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. M. Chung and H. Takahasi, “Large deviation principle for Benedicks–Carleson quadratic maps,” Comm. Math. Phys. 315, 803 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Hatomoto, “Polynomial upper bounds on large and moderate deviations for diffeomorphisms with weak hyperbolic product structure,” Far East J.Math. Sci. 69, 1 (2012).

    MathSciNet  MATH  Google Scholar 

  9. N. T. A. Haydn, “Entry and return times distribution,” Dynam. Syst. 28, 333 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness (Springer, Berlin, 2001).

    Book  MATH  Google Scholar 

  11. A. G. Kachurovskiĭ, “The rate of convergence in ergodic theorems,” UspekhiMat. Nauk 51, no. 4, 73 (1996) [RussianMath. Surveys 51, 653 (1996)].

    Article  MathSciNet  MATH  Google Scholar 

  12. A. G. Kachurovskiĭ and I. V. Podvigin, “Large deviations and the rate of convergence in the Birkhoff ergodic theorem,” Mat. Zametki 94, 569 (2013) [Math. Notes 94, 524 (2013)].

    Article  MathSciNet  MATH  Google Scholar 

  13. A. G. Kachurovskiĭ and I. V. Podvigin, “Correlations, large deviations, and rates of convergence in ergodic theorems for characteristic functions,” Dokl. Akad. Nauk 461, 509 (2015) [Dokl.Math. 91, 204 (2015)].

    MathSciNet  MATH  Google Scholar 

  14. A.G. Kachurovskiĭ and I. V. Podvigin, “Estimates of the rate of convergence in the vonNeumann and Birkhoff ergodic theorems,” Tr.Mosk.Mat. Obshch. 77, 1 (2016) [Trans.MoscowMath. Soc. 1, (2016)].

    MATH  Google Scholar 

  15. A. G. Kachurovskiĭ and I. V. Podvigin, “Large deviations and rates of convergence in the Birkhoff ergodic theorem: from Ho¨ lder continuity to continuity,” Dokl. Akad. Nauk 466, 12 (2016) [Dokl.Math. 93, 6 (2016)].

    MATH  Google Scholar 

  16. E. Lesigne and D. Volný, “Large deviations for generic stationary processes,” Colloq. Math. 84–85, 75 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. D. Mauldin, “σ-Ideals and related Baire systems,” Fundam. Math. 71, 171 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Mazzone, “A characterization of almost everywhere continuous functions,” Real Anal. Exchange 21, 317 (1996).

    MathSciNet  MATH  Google Scholar 

  19. I. Melbourne, “Large and moderate deviations for slowlymixing dynamical systems,” Proc.Amer.Math. Soc. 137, 1735 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Pollicott and R. Sharp, “Large deviations, fluctuations and shrinking intervals,” Comm. Math. Phys. 290, 321 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Pollicott and R. Sharp, “Large deviations for intermittent maps,” Nonlinearity 22, 2079 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Rey-Bellet and L.-S. Young, “Large deviations in non-uniformly hyperbolic dynamical systems,” Ergodic Theory Dynam. Syst. 28, 587 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Sendov and V. A. Popov, Averaged Moduli of Smoothness (Bulgar. Akad. Nauk, Sofiya, 1983) [The AveragedModuli of Smoothness. Applications in Numerical Methods and Approximation (Wiley, Chichester, 1988)].

    MATH  Google Scholar 

  24. D. Volný and B. Weiss, “Coboundaries in L 0 ,” Ann. Inst. H. Poincaré, Probab. Stat. 40, 771 (2004).

    Article  MATH  Google Scholar 

  25. S. Waddington, “Large deviation asymptotics for Anosov flows,” Ann. Inst. H. Poincaré, Anal. Non Linéaire 13, 445 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kachurovskiĭ.

Additional information

Original Russian Text © A. G. Kachurovskiĭ and I. V. Podvigin, 2017, published in Matematicheskie Trudy, 2017, Vol. 20, No. 1, pp. 97–120.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachurovskiĭ, A.G., Podvigin, I.V. Large Deviations of the Ergodic Averages: From Hölder Continuity to Continuity Almost Everywhere. Sib. Adv. Math. 28, 23–38 (2018). https://doi.org/10.3103/S1055134418010029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134418010029

Keywords

Navigation