Skip to main content

Stochastic equations with discontinuous jump functions


In the present article, we consider a stochastic differential equation that contains an integral with respect to a Poisson measure but avoids the diffusion term. The integrand need not be continuous. We introduce a definition of a solution and prove the existence and uniqueness theorems.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. A. Andronov, A. A. Vitt, and S. E. Khaĭkin, The Theory of Oscillations (Nauka,Moscow, 1981) [Theory of Oscillators (Pergamon Press, Oxford, 1966)].

    MATH  Google Scholar 

  2. 2.

    Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V. V. Obukhovskiĭ, Introduction to the Theory of Multi-Valued Mappings and Differential Inclusions Librokom, Moscow, 2011 [in Russian].

    MATH  Google Scholar 

  3. 3.

    E. Cépa, “Probléme de Skorohod multivoque,” Ann. Probab. 26, 500 (1998) [in French].

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    A. F. Filippov, “Differential equations with discontinuous right-hand side,” Mat. Sb. 51, 99 (1960) [in Russian].

    MathSciNet  MATH  Google Scholar 

  5. 5.

    A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side (Nauka, Moscow, 1985) [Differential Equations with Discontinuous Right-Hand Sides (Kluwer, Dordrecht, 1988)].

    MATH  Google Scholar 

  6. 6.

    I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations (Naukova Dumka, Kiev, 1968) [Stochastic Differential Equations (Springer, Berlin–Heidelberg–New York, 1972)].

    MATH  Google Scholar 

  7. 7.

    I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and Their Applications (Naukova Dumka, Kiev, 1982) [in Russian].

    MATH  Google Scholar 

  8. 8.

    N. Ikeda and Sh. Watanabe, Stochastic Differential Equations and Diffusion Processes (North-Holland, Amsterdam, 1989).

    MATH  Google Scholar 

  9. 9.

    K. Itô, Stochastic Processes (Iwanami, Tokyo, 1957) [Essentials of Stochastic Processes (Amer. Math. Soc., Providence, RI, 2006)].

    Google Scholar 

  10. 10.

    M. Kisielewicz, “Weak compactness of solution sets to stochastic differential inclusions with convex righthand sides,” Topol.Methods Nonlinear Anal. 18, 149 (2001).

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    M. Kisielewicz, Stochastic Differential Inclusions and Applications (Springer, Berlin, 2013).

    Book  MATH  Google Scholar 

  12. 12.

    T. Komatsu, “Markov processes associated with certain integro-differential operators,” Osaka J. Math. 10, 271 (1973).

    MathSciNet  MATH  Google Scholar 

  13. 13.

    T. Komatsu, “On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type,” Proc. Japan Acad., Ser. A 58, 353 (1982).

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    T. N. Kravets, “On the question of stochastic differential inclusions,” Teor. Sluch. Protsess. 15, 54 (1987) [in Russian].

    MATH  Google Scholar 

  15. 15.

    T. N. Kravets, “On the stability of solutions of stochastic differential inclusions,” Ukr. Matem. Zh. 47, 551 (1995) [Ukrain. Math. J. 47, 640 (1995)].

    MathSciNet  MATH  Google Scholar 

  16. 16.

    A. J. Kurdila and M. Zabarankin, Convex Functional Analysis (Birkhäuser, Basel, 2005).

    MATH  Google Scholar 

  17. 17.

    A. N. Lepeyev, “On stochastic differential inclusions with unbounded right sides,” Theory Stoch. Process. 12, 94 (2006).

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Z. Li and L. Mytnik, “Strong solutions for stochastic differential equations with jumps,” Ann. Inst. H. Poincaré, Probab. Stat. 47, 1055 (2011).

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    M. Michta, “Optimal solutions to stochastic differential inclusions,” Appl.Math. 29, 387 (2002).

    MathSciNet  MATH  Google Scholar 

  20. 20.

    M. Michta, “Stochastic inclusions with multivalued integrators,” Stochastic Anal. Appl. 20, 847 (2002).

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    M. Michta, “On weak solutions to stochastic differential inclusions driven by semimartingales,” Stochastic Anal. Appl. 22, 1341 (2004).

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    B. øksendal, Stochastic Differential Equations. Introduction with Applications (Springer, Berlin, 2003).

    MATH  Google Scholar 

  23. 23.

    J. Ren and J. Wu, “Multi-valued stochastic differential equations driven by Poisson point processes,” Progress Probab. 65, 191 (2011).

    MathSciNet  MATH  Google Scholar 

  24. 24.

    P. Robert, Réseux et files dattente: méthodes probabilistes (Springer, Paris, 2000) [Stochastic Networks and Queues (Springer, Berlin, 2003)].

    Google Scholar 

  25. 25.

    A. V. Skorokhod, Studies on the Theory of Stochastic Processes (Izd. Kiev Univ., Kiev, 1961) [in Russian].

    Google Scholar 

  26. 26.

    D. W. Stroock, “Diffusion processes associated with Levi generators,” Z. Wahrscheinlichkeitstheor. Verw. Geb. 32, 209 (1975).

    Article  MATH  Google Scholar 

  27. 27.

    T. Tsuchiya, “On the pathwise uniqueness of solutions of stochastic differential equations driven by multidimensional symmetric a stable class,” J.Math. Kyoto Univ. 46, 107 (2006).

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    X. Zhang, “Skorohod problem and multivalued stochastic evolution equations in Banach spaces,” Bull. Sci. Math. 131, 175 (2007). SIBERIAN ADVANCES

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. V. Logachov.

Additional information

Original Russian Text © A. V. Logachov and S. Ya. Makhno, 2017, published in Matematicheskie Trudy, 2017, Vol. 20, No. 1, pp. 128–144.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Logachov, A.V., Makhno, S.Y. Stochastic equations with discontinuous jump functions. Sib. Adv. Math. 27, 263–273 (2017).

Download citation


  • stochastic differential equation
  • Poisson measure
  • differential inclusions