Skip to main content

First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories

Abstract

The notions of finitary and infinitary combinatorics were recently introduced by the author. In the present article, we discuss these notions and the corresponding semantical layers. We suggest a definition of a model-theoretical property. By author’s opinion, this definition agrees with the meaning that is generally accepted and used inmodel theory.We show that the similarity relation for theories over finitary and infinitary layers of model-theoretical properties is natural and important. Our arguments are based on comparing our approach with known model-theoretical ones.We find examples of pairs of mutually interpretable theories possessing distinct simple model-theoretical properties. These examples show weak points of the notion of mutual interpretability from the point of view of preservation of model-theoretical properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. L. de Bouvère, “Synonymous theories,” in The Theory of Models (North-Holland, Amsterdam, 1965), 402.

    Google Scholar 

  2. 2.

    Yu. L. Ershov and S. S. Goncharov, Constructive Models (Consultants Bureau, New York, 2000) [Constructive Models (Nauchnaya Kniga, Novosibirsk, 1999)].

    Book  MATH  Google Scholar 

  3. 3.

    H. Gaifman, “Operations on relational structures, functors and classes. I,” in Proc. Tarski Sympos. (Amer. Math. Soc., Providence, RI, 1974), 21.

    Google Scholar 

  4. 4.

    W. Hanf, “Model-theoretic methods in the study of elementary logic,” in The Theory of Models (North- Holland, Amsterdam, 1965), 132. Amsterdam: North-Holland Publishing Co., 1965. P. 132–145.

    Google Scholar 

  5. 5.

    W. Hanf, “The Boolean algebra of logic,” Bull. Amer. Math. Soc. 81, 587 (1975).

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    W. Hodges, A Shorter Model Theory (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  7. 7.

    A. I. Mal’tsev, “Strongly related models and recursively perfect algebras,” Soviet Math., Dokl. 3, 987 (1962) [Dokl. Akad. Nauk SSSR 145, 276 (1962)].

    MATH  Google Scholar 

  8. 8.

    K. L. Manders, First-Order Logical Systems and Set-Theoretical Definability (Univ. Pittsburgh, Pittsburgh, 1980) [preprint].

    Google Scholar 

  9. 9.

    J. Mycielski, “A lattice of interpretability types of theories,” J. Symbolic Logic 42, 297 (1977).

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    J. Mycielski, P. Pudlák, and A. Stern, A Lattice of Chapters of Mathematics (Interpretations Between Theorems) (Amer.Math. Soc, Providence, RI, 1990).

    MATH  Google Scholar 

  11. 11.

    D. Myers, “Lindenbaum–Tarski algebras,” in Handbook of Boolean Algebras 3 (Elsevier, Amsterdam, 1989), 1167.

    Google Scholar 

  12. 12.

    D. Myers, “An interpretive isomorphism between binary and ternary relations,” in Structures in Logic and Computer Science (Springer-Verlag, Berlin, 1997), 84.

    Chapter  Google Scholar 

  13. 13.

    M. G. Peretyat’kin, “The similarity of properties of recursively enumerable and finitely axiomatizable theories,” Soviet Math., Dokl. 40, 372 (1990) [Dokl. Akad. Nauk SSSR 308, 788 (1989)].

    MathSciNet  MATH  Google Scholar 

  14. 14.

    M. G. Peretyat’kin, “Semantically universal classes of models,” Algebra and Logic 30, 271 (1991) [Algebra i logika 30, 414 (1991)].

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    M. G. Peretyat’kin, “Analogues of Rice’s theorem for semantic classes of propositions,” Algebra and Logic 30, 332 (1991) [Algebra i logika 30, 517 (1991)].

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    M. G. Peretyat’kin, Finitely Axiomatizable Theories (Plenum, New York, 1997) [Finitely Axiomatizable Theories (Nauchnaya Kniga, Novosibirsk, 1997)].

    MATH  Google Scholar 

  17. 17.

    M. G. Peretyat’kin, “Finitely axiomatizable theories and similarity relations,” in Model Theory and Applications (Amer.Math. Soc., Providence, RI, 1999), 309.

    Chapter  Google Scholar 

  18. 18.

    M. G. Peretyat’kin, “On model-theoretic properties that are not preserved on the pairs of mutually interpretable theories,” in Logic Colloquium 2012–Contributed Talks (Univ. Manchester, Manchester, UK, 2012) [http://wwwclepsmanchesteracuk/medialand/maths/archivedevents/ workshops/wwwmimsmanchesteracuk/events/workshops/LC2012/abs/contribpdf].

    Google Scholar 

  19. 19.

    M. G. Peretyat’kin, “Introduction in first-order combinatorics providing a conceptual framework for computation in predicate logic,” in Computation Tools (IARIA, 2013), 31 [https://wwwthinkmindorg/downloadphp?articleid=computation_tools_2013_2_10_80018].

    Google Scholar 

  20. 20.

    C. C. Pinter, “Properties preserved under definitional equivalence and interpretations,” Z. Math. Logik Grundlag.Math. 24, 481 (1978).

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    J. R. Shoenfield, Mathematical Logic (Addison-Wesley, Reading, MA, 1967).

    MATH  Google Scholar 

  22. 22.

    L. Szczerba, “Interpretability of elementary theories,” in Logic, Foundations of Mathematics and Computability Theory (D. Reidel Publishing Co., Dordrecht, 1977), 129.

    Chapter  Google Scholar 

  23. 23.

    W. Szmielew and A. Tarski, “Mutual interpretability of some essentially undecidable theories,” in Proc. Internat. Congr. Math. I (Amer. Math. Soc., Providence, RI, 1952), 734.

    Google Scholar 

  24. 24.

    H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York–Toronto–London, 1967).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. G. Peretyat’kin.

Additional information

Original Russian Text © M.G. Peretyat’kin, 2015, published in Matematicheskie Trudy, 2015, Vol. 18, No. 2, pp. 61–92.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peretyat’kin, M.G. First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories. Sib. Adv. Math. 26, 196–214 (2016). https://doi.org/10.3103/S1055134416030044

Download citation

Keywords

  • first-order logic
  • theory
  • Tarski–Lindenbaum algebra
  • model-theoretical property
  • interpretation
  • semantically similar theories
  • first-order combinatorics