Skip to main content

Functions with (non)timelike gradient on a space-time

Abstract

We consider some generalization of a problem proposed byV. A. Toponogov for functions with nontimelike gradient on a globally hyperbolic space-time and a specific application of the positive solution of this problem to the cases of a Minkowski space-time and a de Sitter space-time of the first kind. Examples of smooth functions with timelike gradient on Lorentz manifolds are given. The authors obtain some sufficient conditions for level surfaces of functions with timelike gradient on a Lorentz manifold which guarantee that the manifold is globally hyperbolic. A description of the past and the future event horizons for timelike geodesics in a de Sitter space-time of the first kind is given. Some unsolved problems are formulated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. K. Beem and P. E. Erlich, Global Lorentzian Geometry (Marcel Dekker, New York–Basel, 1981; Mir, Moscow, 1985).

    MATH  Google Scholar 

  2. 2.

    V. N. Berestovskiĭ, “On a Problem by V. A. Toponogov,” Mat. Tr. 13, 15 (2010) [Sib. Adv. Math. 21, 170 (2011)].

    MATH  MathSciNet  Google Scholar 

  3. 3.

    V. N. Berestovskiĭ, “On a problem by V. A. Toponogov and its generalizations,” in Relativity, Gravity and Geometry, Petrov 2010 Anniversary Symposium on General Relativity and Gravitation, November 1–6, 2010, Kazan. Contributed papers, 62 (Kazan, Kazan Univ., 2010).

    Google Scholar 

  4. 4.

    V. N. Berestovskiĭ, “On a Problem by V. A. Toponogov and its generalizations,” Proc. of LobachevskiĭMath. Center, 42: LobachevskiĭReadings (Kazan, October 1–6, 2010), 58 (Kazan Mathematical Society, Kazan, 2010).

  5. 5.

    V. N. Berestovskiĭ, “On a Problem by V. A. Toponogov,” Proc. of International Scientific Conference “Operator Theory, Complex Analysis, and Mathematical Modeling,” Abstracts (Volgodonsk, Russia, July 4–8, 2011), 29 (Southern Mathematical Institute, Vladikavkaz, 2011).

    Google Scholar 

  6. 6.

    A. L. Besse, Manifolds All of Whose Geodesics Are Closed (Springer-Verlag, Berlin–Heidelberg–New York, 1978;Mir, Moscow, 1981).

    MATH  Book  Google Scholar 

  7. 7.

    A. A. Fridman, Selected Works (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  8. 8.

    R. P. Geroch, “Domain of dependence,” J. Mathematical Phys. 11, 437 (1970).

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen. Lecture Notes in Mathematics, No. 55. (Springer-Verlag, Berlin–New York, 1968;Mir, Moscow, 1971).

    Book  Google Scholar 

  10. 10.

    S. W. Hawking, “The existence of cosmic time functions,” Proc. Roy. Soc. London Ser. A. N308, 433 (1968).

    Google Scholar 

  11. 11.

    S. W. Hawking, “The Universe in a Nutshell” (Bantam Spectra, New York, 2001; Amfora, Saint Petersburg, 2013).

    Google Scholar 

  12. 12.

    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, London–New York, 1973; Mir, Moscow, 1977).

    MATH  Book  Google Scholar 

  13. 13.

    J. Leray, Hyperbolic Differential Equations (The Institute for Advanced Study, Princeton, N. J., 1953; Nauka Moscow, 1984).

    Google Scholar 

  14. 14.

    N. V. Mitskevich, A. P. Efremov, and A. I. Nesterov, Dynamics of Fields in General Relativity (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  15. 15.

    R. Penrose, “Structure of Space-Time,” in Battelle Rencontres. 1967. Lectures in Mathematics and Physics, Chapter VII, 121 (Benjamin, New York, 1968; Mir, Moscow, 1972).

    Google Scholar 

  16. 16.

    B. A. Rozenfel’d, “Non-Euclidean Geometries,” (Gosudarstv. Izdat. Tehn. -Teor. Lit., Moscow, 1955) [in Russian].

    Google Scholar 

  17. 17.

    K. Nomizu, “Left-invariant Lorentz metrics on Lie groups,” Osaka. J. Math. 16 143 (1979).

    MATH  MathSciNet  Google Scholar 

  18. 18.

    S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, New York–London–Sydney–Toronto, 1972; Mir, Moscow, 1975).

    Google Scholar 

  19. 19.

    H. Whitney, “Differentiable manifolds,” Ann. of Math. (2) 37, 645 (1936).

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Berestovskiĭ.

Additional information

Original Russian Text © V.N. Berestovskiĭ and I.A. Zubareva, 2014, published in Matematicheskie Trudy, 2014, Vol. 17, No. 2, pp. 41–60.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berestovskiĭ, V.N., Zubareva, I.A. Functions with (non)timelike gradient on a space-time. Sib. Adv. Math. 25, 243–254 (2015). https://doi.org/10.3103/S1055134415040021

Download citation

Keywords

  • globally hyperbolic space-time
  • Cauchy surface
  • (non)timelike gradient
  • Lorentz manifold
  • level surface
  • de Sitter space-time of the first kind
  • world line
  • event horizon