Skip to main content

The generalized Itô–Venttsel’ formula in the case of a noncentered Poisson measure, a stochastic first integral, and a first integral


We deduce an analog of the Itô–Venttsel’ formula for an Itô system of generalized stochastic differential equations (GSDE) with noncentered measure on the basis of a stochastic kernel of an integral invariant. We construct a system of GSDE whose solution is a kernel of an integral invariant connected with a solution to GSDE with noncentered measure. We introduce the notion of a stochastic first integral of a system of GSDE with noncentered measure and find conditions under which a random function is a first integral of a given system of GSDE.

This is a preview of subscription content, access via your institution.


  1. 1.

    J.-M. Bismut, “A generalized formula of Itô and some other properties of stochastic flows,” Z.Wahrsch. Verw. Gebiete 55, 331 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  2. 2.

    E. V. Chalykh, “A generalization of models of Brownian motion with orthogonal random actions,” in: The Second International Scientific Technical Conference “Open Evolving Systems” (December 1–30, 2003), Abstracts, 90 (VNZ VMURoL, Kyiv, 2004);

    Google Scholar 

  3. 3.

    E. V. Chalykh, “Program control with probability 1 for open systems,” Obozr. Prikl. Prom. Mat. 14, 253 (2007).

    Google Scholar 

  4. 4.

    V. A. Dubko, First Integrals of Systems of Stochastic Differenial Equations, Preprint (Izd-vo An USSR, In-tMatematiki, Kiev, 1978) [in Russian];

    Google Scholar 

  5. 5.

    V. A. Dubko, “Integral invariants for some class of systems of stochastic differential equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No.1, 18 (1984).

    Google Scholar 

  6. 6.

    V. A. Dubko, Questions in the Theory and Applications of Stochastic Differential Equations (DVO AN SSSR, Vladivostok, 1989) [in Russian].

    MATH  Google Scholar 

  7. 7.

    V. A. Dubko, “Integral invariants of Itô’ s equations and their relation with some problems of the theory of stochastic processes,” Dopov. Nats. Akad. Nauk Ukr.,Mat. Pryr. Tekh. Nauky, No.1, 24 (2002).

    MathSciNet  Google Scholar 

  8. 8.

    V. A. Dubko, “Open evolving systems,” in: The First International Scientific Technical Conference “Open Evolving Systems” (April 26–27, 2002), Abstracts, 14 (VNZ VMURoL, Kyiv, 2002);

    Google Scholar 

  9. 9.

    V. A. Dubko and E. V. Chalykh, “Construction of an analytic solution for one class of Langevin-type equations with orthogonal random actions,” Ukr. Mat. Zh. 50, 588 (1998) [Ukr.Math. J. 50, 666 (1998)].

    Article  MathSciNet  MATH  Google Scholar 

  10. 10.

    N. P. Erugin, “Construction of the whole set of differential equations having a given integral curve,” Prikl. Mat. Mekh. 16, 658 (1952).

    Google Scholar 

  11. 11.

    I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations (Naukova Dumka, Kiev, 1968; Springer Verlag, Berlin, 1972).

    Book  MATH  Google Scholar 

  12. 12.

    K. Itô, “Stochastic differential equations in a differentiable manifold,” Nagoya Math. J. 1, 35 (1950).

    MathSciNet  MATH  Google Scholar 

  13. 13.

    E. V. Karachanskaya, “On a generalization of the Itô–Venttsel-formula,” Obozr. Prikl. Prom. Mat. 18, 494 (2011).

    Google Scholar 

  14. 14.

    E. V. Karachanskaya, “Construction of program controls with probability 1 for a dynamical system with Poisson perturbations,” Vestnik Tikhookeansk. Gosuniversiteta No. 2 (21), 51 (2011).

    Google Scholar 

  15. 15.

    E. V. Karachanskaya, “Construction of a set of differential equations with a given set of first integrals,” Vestnik Tikhookeansk. Gosuniversiteta No. 3 (22), 47 (2011).

    Google Scholar 

  16. 16.

    N. V. Krylov and B. L. Rozovskii, “Stochastic partial differential equations and diffusion processes,” Usp. Mat. Nauk 37, No. 6 (228), 75 (1982) [Russ.Math. Surv. 37, 81 (1982)].

    MathSciNet  MATH  Google Scholar 

  17. 17.

    N. V. Krylov, “On the Itô–Wentzell formula for distribution-valued processes and related topics,” Probab. Theory Related Fields 150, 295–319 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. 18.

    H. Kunita and S. Watanabe, “On square integrable martingales,” Nagoya Math. J. 30, 209 (1967) [Matematika, Moskva, 15, No. 1, 66 (1971)].

    MathSciNet  MATH  Google Scholar 

  19. 19.

    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations (Editorial URSS, Moscow, 2004; Princeton University Press, rinceton, N.J., 1960].

    MATH  Google Scholar 

  20. 20.

    D. Ocone and E. Pardoux, “A generalized Itô–Ventzell formula,” Ann. Inst. H. PoincaréSect. B 25, 39 (1989).

    MathSciNet  MATH  Google Scholar 

  21. 21.

    B. Oksendal and T. Zhang, “The Itô–Ventzell formula and forward stochastic differential equations driven by Poisson random measures,” Osaka J. Math. 44, 207 (2007)

    MathSciNet  Google Scholar 

  22. 22.

    A. Poincaré, Selected Works in Three Volumes. Vol. II: Les Méthodes Nouvelles de la Mécanique Céleste. Topology. Number Theory (Nauka, Moscow, 1972) [in Russian].

    MATH  Google Scholar 

  23. 23.

    B. L. Rozovskii, “On the Ito-Venttsel formula,” Vestn. Mosk. Univ., Ser. I. 28, No.1, 26 (1973) [Mosc. Univ. Math. Bull. 28, 22 (1973)].

    MathSciNet  Google Scholar 

  24. 24.

    A. D. Ventzel, “On equations of the theory of conditionalMarkov processes,” Teor. Veroyatnost. i Primenen. 10, 390 (1965) [Theory Probab. Appl. 10, 357 (1965)].

    Google Scholar 

  25. 25.

    V. I. Zubov, Dynamics of Controlled Systems (Vysshaya Shkola, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. V. Karachanskaya.

Additional information

Original Russian Text © E.V. Karachanskaya, 2014, published in Matematicheskie Trudy, 2014, Vol. 17, No. 1, pp. 99–122.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karachanskaya, E.V. The generalized Itô–Venttsel’ formula in the case of a noncentered Poisson measure, a stochastic first integral, and a first integral. Sib. Adv. Math. 25, 191–205 (2015).

Download citation


  • Itô–Venttsel formula
  • generalized stochastic differential equation
  • noncentered Poisson measure
  • kernel of an integral invariant
  • stochastic first integral