Skip to main content

Solving a pursuit problem in high-order controlled distributed systems


We study a pursuit problem in controlled systems with high-order distributed parameters. Sufficient conditions are obtained for the possibility of the completion of the pursuit by the finite difference method. We also give computer realizations of the problem by parallel computing.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming (Addison-Wesley, Reading, MA, 2000; Williams Publishing, Moscow, 2003).

    Google Scholar 

  2. 2.

    F. Browder, “Linear parabolic differential equations of arbitrary order; general boundary-value problems for elliptic equations,” Proc. Nat. Acad. Sci. U.S.A. 39, 185 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    V. P. Gergel’ and R. G. Strongin, Foundations of Parallel Computing for Multiprocessor Computing Systems (Nizhny Novgorod State Univ. Press, Nizhny Novgorod, 2003) [in Russian].

    Google Scholar 

  4. 4.

    A. Grama A., A. Gupta. G. Karypis G., and V. Kumar, Introduction to Parallel Computing (Addison-Wesley, Harlow, 2003).

    Google Scholar 

  5. 5.

    A. V. Il’in and E. I. Moiseev, “Optimal boundary control of a displacement at one end of a string with the second end free and the corresponding distribution of the string total energy,” Dokl. Akad. Nauk 400, 587 (2005) [Dokl. Math. 71, 96 (2005)].

    MathSciNet  Google Scholar 

  6. 6.

    A. I. Kototkii and Yu. S. Osipov, “Approximation in problems of position control of parabolic systems,” Prikl. Mat. Mekh. 42 599 (1978) [J. Appl. Math. Mech. 42 631 (1978)].

    Google Scholar 

  7. 7.

    O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka. Moscow, 1973; Springer-Verlag. New York etc., 1985).

    Google Scholar 

  8. 8.

    M. Sh. Mamatov, “Application of the finite difference method to the problem of pursuit in the distributed-parameter systems,” Avtomat. i Telemekh. No. 8, 123 (2009) [Autom. Remote Control 70, 1376 (2009).]

    Google Scholar 

  9. 9.

    M. Sh. Mamatov, “On the theory of differential pursuit games in distributed parameter systems,” Automat. i Vychisl. Tekhn. No. 1, 5 (2009) [Autom. Control Comp. Sci. 43, 1 (2009)].

    Google Scholar 

  10. 10.

    M. Sh. Mamatov and M. Tukhtasinov, “Pursuit problem in distributed control systems,” Kibern. Sist. Anal. No. 2, 153 (2009) [Cybern. Syst. Anal. 45 297–302 (2009)].

    Google Scholar 

  11. 11.

    G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1989; Springer-Verlag, New York-Heidelberg-Berlin, 1982).

    MATH  Google Scholar 

  12. 12.

    Yu. S. Osipov, “Position control in parabolic systems,” Prikl. Mat. Meh. 41, 195 (1977) [J. Appl. Math. Mech. 41, 187 (1977)].

    MathSciNet  Google Scholar 

  13. 13.

    Yu. S. Osipov, L. Pandolfi, L., and V. I. Maksimov, “The problem of robust boundary control: The case of Dirichlet boundary conditions,” Dokl. Akad. Nauk 374, 310 (2000) [Dokl. Math. 62, 205 (2000)].

    MathSciNet  Google Scholar 

  14. 14.

    N. Yu. Satimov and M. Sh. Mamatov, “A class of differential and discrete linear games between groups of pursuers and pursued,” Differ. Uravn. 26, 1541 (1990) [Differ. Equ. 26, 1138 (1990)].

    MATH  MathSciNet  Google Scholar 

  15. 15.

    N. Yu. Satimov and M. Tukhtasinov, “Some game problems in distributed controlled systems,” Prikl. Mat. Mekh. 69, 986 (2005) [J. Appl. Math. Mech. 69, 885 (2005)].

    MATH  MathSciNet  Google Scholar 

  16. 16.

    N. Yu. Satimov and M. Tukhtasinov, “Game problems on a fixed interval in controlled first-order evolution equations,” Mat. Zametki 80, 613 (2006) [Math. Notes 80 578 (2006)].

    Article  MathSciNet  Google Scholar 

  17. 17.

    V. K. Soul’ev, Integration of Parabolic Equations by the Method of Meshes (Fizmatgiz, Moscow, 1969) [in Russian].

    Google Scholar 

  18. 18.

    E. E. Tartyshnikov, Methods of Numerical Analysis (Academia Publishing Center, Moscow, 2007).

    Google Scholar 

  19. 19.

    V. V. Tikohmirov, “The wave equation with a boundary control in the case of elastic fixing. I,” Differ. Uravn. 38 393 (2002) [Differ. Equ. 38 413 (2002)].

    Google Scholar 

  20. 20.

    M. Tukhtasinov and M. Sh. Mamatov, “On pursuit problems in controlled distributed systems,” Mat. Zametki 84, 273 (2008) [Math. Notes 84 256 (2008)].

    Article  MathSciNet  Google Scholar 

  21. 21.

    M. Tukhtasinov and M. Sh. Mamatov, “On transfer problems in control systems,” Differ. Uravn. 45 425 (2009) [Differ. Equ. 45, 439 (2009)].

    MathSciNet  Google Scholar 

  22. 22.

    Vl. V. Voevodin and S. A. Zhumatyĭ, Computing Work and Cluster Systems (Moscow State University, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kh. N. Alimov.

Additional information

Original Russian Text © M. Sh. Mamatov and Kh. N. Alimov, 2013, published in Matematicheskie Trudy, 2013, Vol. 16, No. 2, pp. 95–110.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alimov, K.N., Mamatov, M.S. Solving a pursuit problem in high-order controlled distributed systems. Sib. Adv. Math. 24, 229–239 (2014).

Download citation


  • pursuit
  • pursuer
  • evader
  • pursuit control
  • evasion control