Skip to main content

Constructing multiple stochastic integrals on non-Gaussian product measures


We study a construction of multiple stochastic integrals of nonrandom functions with respect to the product measures generated by stochastic processes admitting representations as multiple orthogonal random series. This construction is compared with some classical schemes of constructing stochastic integrals of such a kind.

This is a preview of subscription content, access via your institution.


  1. 1.

    I. S. Borisov and A. A. Bystrov, “Constructing a stochastic integral of a nonrandom function without the orthogonality condition for the integrating measure,” Teor. Verojatnost. i Primenen. 50, 52 (2005) [Theory Probab. Appl. 50, 53 (2006)]

    Article  MathSciNet  Google Scholar 

  2. 2.

    A. A. Borovkov, Probability theory, Gordon and Breach Science Publishers, Amsterdam, 1998.

    MATH  Google Scholar 

  3. 3.

    I. I. Gihman and A. V. Skorohod, Introduction to the Theory of Random Processes, Moscow: Nauka, 1965 [in Russian].

    Google Scholar 

  4. 4.

    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Fifth edition. With a supplement “Banach algebras” by V.M. Tikhomirov, Moscow: Nauka, 1981 [in Russian].

    MATH  Google Scholar 

  5. 5.

    A. A. Filippova, “The theorem of von Mises on limiting behaviour of functionals of empirical distribution functions and its statistical applications,” Teor. Verojatnost. i Primenen. 7, 26 (1962) [in Russian].

    MathSciNet  Google Scholar 

  6. 6.

    S. Cambanis and S. T. Huang, “Stochastic and multiple Wiener integrals for Gaussian processes,” Ann. Probability 6, 585 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    A. Dasgupta and G. Kallianpur, “Multiple fractional integrals,” Probab. Theory Rel. Fields 115, 505 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    K. Itô, “Stochastic integral,” Proc. Imp. Acad. Tokyo 20, 519 (1944).

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    P. Major, Multiple Wiener-Itô Integrals, Lecture Notes in Math. 849, Berlin: Springer, 1981.

    MATH  Google Scholar 

  10. 10.

    N. Wiener “The homogeneous chaos,” Amer. J. Math. 60, 897 (1938).

    Article  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to I. S. Borisov.

Additional information

Original Russian Text © I. S. Borisov and S. E. Khrushchev, 2012, published in Matematicheskie Trudy, 2012, Vol. 15, No. 2, pp. 37–71.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borisov, I.S., Khrushchev, S.E. Constructing multiple stochastic integrals on non-Gaussian product measures. Sib. Adv. Math. 24, 75–99 (2014).

Download citation


  • multiple stochastic integral
  • multiple orthogonal series
  • Hilbert-space-valued stochastic process
  • expansions of stochastic processes via orthogonal series