Skip to main content

Comparing equivalences on precubical sets and spaces


We study equivalences of concurrent processes represented by objects of algebraic topology. We use methods of category theory and consider precubical sets (analogs of semisimplicial sets) and precubical spaces (analogs of cell complexes). In particular, we consider categories of these objects and construct subcategories of path-objects. We define open morphisms with respect to these subcategories and formulate criteria for a morphism to be open. We prove that the equivalence of precubical sets (spaces) based on open morphisms coincides with a behavioral equivalence of concurrent processes.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, and Surfaces (Springer-Verlag, New York, 1988) [Géométrie Différentielle: Varietés, Courbes et Surfaces (Presses Universitaires de France, Paris, 1987)].

    Book  MATH  Google Scholar 

  2. 2.

    L. Fajstrup, “Dicovering spaces,” Homology Homotopy Appl. 5(2), 1–17 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    L. Fajstrup, “Dipaths and dihomotopies in a cubical complex,” Adv. Appl. Math. 35(2), 188–206 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    U. Fahrenberg, “Directed homology,” Electronic Notes in Theoret. Comput. Sci. 100, 111–125, (2004).

    Article  MathSciNet  Google Scholar 

  5. 5.

    Fahrenberg U. “A category of higher-dimensional automata,” in Foundations of Software Science and Computation Structures, Lecture Notes in Comput. Sci. 3441 (Springer, Berlin, 2005), pp. 187–201.

    Google Scholar 

  6. 6.

    R. J. van Glabbeek, “On the expressiveness of higher dimensional automata,” Theoret. Comput. Sci. 356(3), 265–290, (2006).

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    E. Goubault, The Geometry of Concurrency (PhD Thesis, École Normale Supérieure, Paris, 1995).

    Google Scholar 

  8. 8.

    E. Goubault and T. P. Jensen, “Homology of higher-dimensional automata,” in CONCUR’ 92, Lecture Notes in Comput. Sci. 630 (Springer, Berlin, 1992), pp. 254–268.

    Google Scholar 

  9. 9.

    M. Grandis, “Directed combinatorial homology and noncommutative tori (the breaking of symmetries in algebraic topology),” Math. Proc. Cambridge Phil. Soc. 138(2), 233–262 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    T. Hune and M. Nielsen, “Timed bisimulation and openmaps,” in Mathematical Foundations of Computer Science (Brno, 1998), Lecture Notes in Comput. Sci. 1450 (Springer, Berlin, 1998), pp. 378–387.

    Article  MathSciNet  Google Scholar 

  11. 11.

    A. Joyal, M. Nielsen, and G. Winskel, “Bisimulation from open maps,” Inform. and Comput. 127(2), 164–185 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    A. A. Khusainov, “Homology groups of semicubical sets,” Siberian Math. J. 49(1), 180–190, (2008) [Sibirsk. Mat. Zh. 49 (1), 224–237 (2008)].

    Article  MathSciNet  Google Scholar 

  13. 13.

    M. Nielsen and A. Cheng, “Observing behavior categorically,” Foundations of Software Technology and Theoretical Computer Science (Bangalore, 1995), Lecture Notes in Comput. Sci. 1026 (Springer, Berlin, 1995), pp. 263–278.

    Google Scholar 

  14. 14.

    M. Nielsen and G. Winskel, “Petri nets and bisimulation,” Theoret. Comput. Sci. 153(1–2), 211–244 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    E. Oshevskaya, I. Virbitskaite, and E. Best, “Unifying equivalences for higher dimensional automata,” Fundam. Inform. 119(3–4), 357–372 (2012).

    MATH  MathSciNet  Google Scholar 

  16. 16.

    V. R. Pratt, “Modeling Concurrency with Geometry,” in Proc. 18th ACM Symposium on Principles of Programming Languages (ACM Press, New York, 1991), pp. 311–322.

    Google Scholar 

  17. 17.

    G. L. Cattani and V. Sassone, “Higher-dimensional transition systems,” in 11th Annual IEEE Symposium on Logic in Computer Science (New Brunswick, NJ, 1996), (IEEE Computer Society Press, Los Alamitos, CA, 1996), pp. 55–62.

    Google Scholar 

  18. 18.

    I. B. Virbitskaite and N. S. Gribovskaya, “Open maps and observational equivalences for timed partial order models,” Fundam. Inform. 60(1–4), 383–399 (2004).

    MATH  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. S. Oshevskaya.

Additional information

Original Russian Text © E.S. Oshevskaya, 2013, published in Matematicheskie Trudy, 2013, Vol. 16, No. 1, pp. 150–188.

About this article

Cite this article

Oshevskaya, E.S. Comparing equivalences on precubical sets and spaces. Sib. Adv. Math. 24, 47–74 (2014).

Download citation


  • precubical sets
  • precubical spaces
  • open morphisms
  • adjoint functors