Skip to main content

On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras

Abstract

We prove that the Ricci operator of any nonunimoular solvable metric Lie algebra having a two-step nilpotent derived Lie algebra of dimension 6 has at least two negative eigenvalues.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. V. Alekseevskii, “Homogeneous Riemannian spaces of negative curvature,” Mat. Sb. (N.S.) 96(138), 93–117 (1975) [Math. USSR Sbornik, 25 (1), 87–109 (1975)].

    MathSciNet  Google Scholar 

  2. 2.

    A. L. Besse, Einstein Manifolds (Springer-Verlag, Berlin, 1987; Mir, Moscow, 1990).

    Book  MATH  Google Scholar 

  3. 3.

    M. S. Chebarykov, “On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension,” Mat. Tr. 13(1), 186–211 (2010) [Siberian Adv. Math., 21 (2), 81–99 (2011)].

    MATH  MathSciNet  Google Scholar 

  4. 4.

    S. Console, A. Fino A., and E. Samiou, “The moduli space of six-dimensional two-step nilpotent Lie algebras,” Ann. Global Anal. Geom. 27(1), 17–32 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    P. Eberlein, “Geometry of 2-step nilpotent Lie groups,” Modern Dynamical Systems and Applications, (Cambridge Univ. Press, Cambridge, 2004), 67–101.

    Google Scholar 

  6. 6.

    W. A. De Graaf, “Classification of 6-dimensional nilpotent Lie algebras over field of characteristic not 2,” J. Algebra 309(2), 640–653 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    A. G. Kremlev and Yu. G. Nikonorov, “The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups. The unimodular case,” Mat. Tr. 11(2), 115–147 (2008) [Siberian Adv. Math., 19 (4), 245–267 (2009)].

    MATH  MathSciNet  Google Scholar 

  8. 8.

    A. G. Kremlev and Yu. G. Nikonorov, “The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups. The nonunimodular case,” Mat. Tr. 12(1), 40–116 (2009) [Siberian Adv. Math., 20 (1), 1–57 (2010)].

    MATH  MathSciNet  Google Scholar 

  9. 9.

    J. Milnor, “Curvatures of left-invariant metrics on Lie groups,” Adv. Math. 21(3), 293–329 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    V. V. Morozov, “Classification of nilpotent Lie algebras of sixth order,” Izv. Vyss. Uchebn. Zaved. Matematika, no. 4 (5), 161–171 (1958).

    Google Scholar 

  11. 11.

    E. V. Nikitenko, “On non-standard Einstein extensions of five-dimensional nilpotent metric Lie algebras,” Sib. Èlektron. Mat. Izv. 3, 115–136 (2006).

    MATH  MathSciNet  Google Scholar 

  12. 12.

    E. V. Nikitenko, and Yu. G. Nikonorov, “Six-dimensional Einstein solvmanifolds,” Mat. Tr. 8(1), 71–121 (2005) [Siberian Adv. Math. 16 (1), 66–112 (2006)].

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Yu. G. Nikonorov and M. S. Chebarykov, “The Ricci operator of completely solvable metric Lie algebras,” Mat. Tr. 15(2), 146–158 (2012).

    MathSciNet  Google Scholar 

  14. 14.

    J. Patera J.,R. T. Sharp, P. Winternitz, and H. Zassenhaus, “Invariants of real low dimension Lie algebras,” J. Mathematical Phys. 17(6) 986–994 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    C. Will, “Rank-one Einstein solvmanifolds of dimension 7,” Differential Geom. Appl. 19(3), 307–318 (2003).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Abiev.

Additional information

Original Russian Text © N.A. Abiev, 2013, published in Matematicheskie Trudy, 2013, Vol. 16, No. 1, pp. 3–17.

About this article

Cite this article

Abiev, N.A. On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras. Sib. Adv. Math. 24, 1–11 (2014). https://doi.org/10.3103/S1055134414010015

Download citation

Keywords

  • metric Lie algebra
  • Ricci operator
  • nonunimodilar solvable Lie algebras
  • two-step nilpotent Lie algebras