Skip to main content

On mappings whose sum is monotone

Abstract

Proposition 1 of this article points at a gap in the proof of Kuhlmann’s characterization of algebraically maximal valued fields [2]. The author [1] showed how to fill this gap. His arguments involved tools of mathematical logic and infinite combinatorics. Proposition 2 of this article provides us with a simple proof of the key fact of Kuhlmann’s characterization.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yu. L. Ershov, Multi-valued Fields (Kluwer Academic Publ./Consultants Bureau, New York, 2001).

    Book  Google Scholar 

  2. 2.

    F.-V. Kuhlmann, Valuation Theory of Fields, Abelian Groups and Modules, Habilitation (Universität Heidelberg, Heidelberg, 1994).

    Google Scholar 

  3. 3.

    F.-V. Kuhlmann, “Elementary properties of power series fields over finite fields,” J. Symbolic Logic 66(2), 771–791 (2001).

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Ershov.

Additional information

Original Russian Text © Yu. L. Ershov, 2004, published in Vestnik NGU. Matematika, Mekhanika, Informatika, 2004, Vol. IV, No. 1, pp. 19–21.

About this article

Cite this article

Ershov, Y.L. On mappings whose sum is monotone. Sib. Adv. Math. 21, 259–261 (2011). https://doi.org/10.3103/S1055134411040031

Download citation

Keywords

  • linearly ordered Abelian groups
  • valued fields