Skip to main content
Log in

The laplace operator on normal homogeneous Riemannian manifolds

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

The article presents an information about the Laplace operator defined on the real-valued mappings of compact Riemannian manifolds, and its spectrum; some properties of the latter are studied. The relationship between the spectra of two Riemannian manifolds connected by a Riemannian submersion with totally geodesic fibers is established. We specify a method of calculating the spectrum of the Laplacian for simply connected simple compact Lie groups with biinvariant Riemannian metrics, by representations of their Lie algebras. As an illustration, the spectrum of the Laplacian on the group SU(2) is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Adams, Lectures on Lie Groups (Benjamin Inc., New York, 1969).

    MATH  Google Scholar 

  2. M. Berger, “Geometry of the spectrum. I,” in Differential Geometry, Proc. Sympos. Pure Math. 27 (2) (Stanford Univ., Stanford, 1973) (Amer. Math. Soc., Providence, R.I., 1975), pp. 129–152.

    Google Scholar 

  3. M. Berger, P. Gauduchon, and E. Mazet, “Le Spectre d’une Vari’et’e Riemannienne,” in vol. 194 of Lecture Notes in Math. (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  4. L. Bers, F. John, and M. Schechter, Partial Differential Equations (Wiley, New York, 1964).

    MATH  Google Scholar 

  5. A. Besse, Manifolds All of Whose Geodesics Are Closed (Springer, New York, 1978).

    MATH  Google Scholar 

  6. J. E. D’Atri and H. K. Nickerson, “The existence of special orthonormal frames,” J. Differ. Geom. 2(4), 393–409 (1968).

    MATH  MathSciNet  Google Scholar 

  7. J. Dixmier, Enveloping Algebras (North-Holland Publ., Amsterdam-New York-Oxford, 1977).

    Google Scholar 

  8. J. J. Duitstermaat and V. W. Guillemin, “The spectral geometry of real and complex manifolds,” in Differential Geometry, Proc. Sympos. Pure Math. 27 (2) (Stanford Univ., Stanford, 1973) (Amer. Math. Soc., Providence, R.I., 1975), pp. 205–209.

    Google Scholar 

  9. H. D. Fegan, “The spectrum of the Laplacian on forms over a Lie group,” Pacific J. Math. 90(2), 373–387 (1980).

    MATH  MathSciNet  Google Scholar 

  10. P. B. Gilkey, “The spectral geometry of real and complex manifolds,” in Differential Geometry, Proc. Sympos. Pure Math. 27 (2) (Stanford Univ., Stanford, 1973) (Amer. Math. Soc., Providence, R.I., 1975), pp. 265–280.

    Google Scholar 

  11. S. Helgason, Differential Geometry and Symmetric Spaces (Academic Press, New York, 1962).

    MATH  Google Scholar 

  12. K. Iosida, Functional Analysis (Springer, Berlin, 1965).

    Google Scholar 

  13. Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, II (Interscience Publ., Wiley, New York-London, 1963, 1969).

    Google Scholar 

  14. J. Milnor, “Eigenvalues of the Laplace operator on certain manifolds,” Proc. Nat. Acad. Sci. U.S.A. 51(4), 542 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. L. Onishchik, Topology of Transitive Transformation Groups (Fiz. Mat. Lit., Moscow, 1995) [Johann Ambrosius Barth., Leipzig, 1994].

    Google Scholar 

  16. A. L. Onishchik, Lectures on Real Semisimple Lie Algebras and Their Representations in ESI Lectures in Mathematics and Physics (European Math. Soc., Zurich, 2004).

    Google Scholar 

  17. S. Rosenberg, The Laplacian on a Riemannian Manifold. An Introduction to Analysis on Manifolds, in vol. 31 of London Mathematical Society Student Texts (Cambridge University Press, London, 1997).

    MATH  Google Scholar 

  18. V. S. Vladimirov and V. V. Zharinov, Equations of Mathematical Physics (Fiz. Mat. Lit., Moscow, 2000) [in Russian].

    MATH  Google Scholar 

  19. A. Weil, L’integration dans les Groupes Topologiques et Ses Applications (Hermann, Paris, 1940).

    Google Scholar 

  20. H. Weyl, The Classical Groups, Their Invariants and Representations (Princeton University Press, New Jersey, 1946).

    MATH  Google Scholar 

  21. D. P. Zhelobenko, Compact Lie Groups and Their Representations (Nauka, Moscow, 1970) [vol. 40 of Transl. Math. Monogr., Amer. Math. Soc, Providence, R.I., 1973].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Berestovskiĭ.

Additional information

Original Russian Text © V. N. Berestovskiĭ and V. M. Svirkin, 2009, published in Matematicheskie Trudy, 2009, Vol. 12, No. 2, pp. 3–40.

About this article

Cite this article

Berestovskiĭ, V.N., Svirkin, V.M. The laplace operator on normal homogeneous Riemannian manifolds. Sib. Adv. Math. 20, 231–255 (2010). https://doi.org/10.3103/S1055134410040012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134410040012

Keywords

Navigation