Skip to main content
Log in

On phase separation points for one-dimensional models

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

In the paper, the one-dimensional model with nearest-neighbor interactions I n , nZ, and the spin values ±1 is considered. It is known that, under some conditions on parameters of I n , a phase transition occurs for this model. We define the notion of a phase separation point between two phases. We prove that the expectation value of this point is zero and its mean-square fluctuation is bounded by a constant C(β) which tends to ¼ as β → ∞, where β = 1/T and T is the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Abraham, Surface Structures and Phase-Transitions — Exact Results, vol. 10 of Phase Transitions and Critical Phenomena, C. Domb and J. Lebowits, Eds. (Acad. Press, New York and London, 1986).

    Google Scholar 

  2. J. Bricmont, J. Lebowitz, and C. Pfister, “On the local structure of the phase separation line in the two-dimensional Ising system,” J. Stat. Phys. 26(2), 313–332 (1981).

    Article  MathSciNet  Google Scholar 

  3. M. Cassandro, P. Ferrari, I. Merola, and E. Presutti, “Geometry of contours and Peierls estimates in d = 1 Ising models with long range interactions,” J.Math. Phys. 46, 053305–053327 (2005).

    Article  MathSciNet  Google Scholar 

  4. R. Dobrushin, “Gibbs state describing coexistence of phases for a three-dimensional Ising model,” Theory Probab. Appl. 17(4), 582–600 (1972).

    Article  MATH  Google Scholar 

  5. F. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet,” Commun. Math. Phys. 12(2), 91–107 (1969).

    Article  MathSciNet  Google Scholar 

  6. F. Dyson, “An Ising ferromagnetic with discontinuous long-range order,” Commun. Math. Phys. 21(4), 269–283 (1971).

    Article  MathSciNet  Google Scholar 

  7. J. Frohlich and T. Spencer, “The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy,” Commun. Math. Phys. 84(1), 87–101 (1982).

    Article  MathSciNet  Google Scholar 

  8. G. Gallavotti, “The phase separation line in the two-dimensional Ising model,” Commun. Math. Phys. 27(2), 103–136 (1972).

    Article  MathSciNet  Google Scholar 

  9. G. Gallavotti, Statistical Mechanics. A Short Treatise, Text and Monographs in Physics (Springer, 1999).

  10. H. O. Georgii, Gibbs Measures and Phase Transitions, vol. 9 of de Gruyter Stud. in Math. (Walter de Gruyter, Berlin, 1988).

    Google Scholar 

  11. K. Johansson, “Condensation of a one-dimensional lattice gas,” Commun. Math. Phys. 141(1), 41–61 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Johansson, “On separation of phase in one-dimensional gases,” Commun. Math. Phys. 169(3), 521–561 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Minlos, Introduction to Mathematical Statistical Physics, vol. 19 of Univ. Lect. Ser. (AMS, 2000).

  14. U. Rozikov, “An example of one-dimensional phase transition,” Sib. Adv. Math. 16(2), 121–125 (2006).

    MathSciNet  Google Scholar 

  15. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).

    MATH  Google Scholar 

  16. W. Sullivan, “Exponential convergence in dynamic Ising models with Distinct phases,” Phys. Lett. A 53(6), 441–442 (1975).

    Article  Google Scholar 

  17. L. Van Hove, “Sur l’integrale de configuration pour les systems de particles a une dimension,” Physica 16, 137–143 (1950).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ganikhodjaev.

Additional information

The text was submitted by the authors in English.

About this article

Cite this article

Ganikhodjaev, N.N., Rozikov, U.A. On phase separation points for one-dimensional models. Sib. Adv. Math. 19, 75–84 (2009). https://doi.org/10.3103/S1055134409020011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134409020011

Key words

Navigation