Skip to main content

What is Boolean valued analysis?


This is a brief overview of the basic techniques of Boolean valued analysis.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. L. Bell, Set Theory: Boolean-Valued Models and Independence Proofs, vol. 47 of Oxford Logic Guides (The Clarendon Press Oxford University Press, Oxford, 2005).

    Google Scholar 

  2. 2.

    G. Boole, Selected Manuscripts on Logic and Its Philosophy, vol. 20 of Science Networks. Historical Studies (Birkhäuser Verlag, Basel, 1997).

    Google Scholar 

  3. 3.

    P. J. Cohen, Set Theory and the Continuum Hypothesis (W. A. Benjamin, Inc., New York etc., 1966).

    MATH  Google Scholar 

  4. 4.

    P. J. Cohen, “The discovery of forcing,” Rocky Mountain J. Math. 32(4), 1071–1100 (2002).

    MATH  MathSciNet  Google Scholar 

  5. 5.

    H. G. Dales and G. Oliveri, eds., Truth in Mathematics (Clarendon Press, Oxford, 1998).

    MATH  Google Scholar 

  6. 6.

    Ch. Freiling, “Axioms of symmetry: throwing darts at the real number line,” J. Symbolic Logic 51(1), 190–200 (1986).

    MATH  Article  MathSciNet  Google Scholar 

  7. 7.

    K. Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis, no. 3 in Annals of Mathematics Studies (Princeton University Press, Princeton, N. J., 1940).

    Google Scholar 

  8. 8.

    E. I. Gordon, “Real numbers in Boolean-valued models of set theory, and K-spaces,” Dokl. Akad. Nauk SSSR 237(4), 773–775 (1977) [Soviet Math. Doklady 18 (4), 1481–1484 (1977)].

    MathSciNet  Google Scholar 

  9. 9.

    D. Hilbert, “Mathematical problems. Lecture delivered before the International Congress ofMathematicians at Paris in 1900,” Bull. Amer. Math. Soc. 8, 437–479 (1902).

    MathSciNet  Article  Google Scholar 

  10. 10.

    D. Hilbert, “On the infinite,” in From Frege to Gödel 1879–1931 (Harvard University Press, Cambridge, 1967), A Source Book in the History of Science, pp. 367–392.

    Google Scholar 

  11. 11.

    D. R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid (Basic Books Inc. Publishers, New York, 1979), 20th Anniversary Edition.

    Google Scholar 

  12. 12.

    P. T. Johnstone, Sketches of an Elephant. A Topos Theory Compendium, vol. 438 of Oxford Logic Guides (The Clarendon Press Oxford University Press, New York, 2002).

    Google Scholar 

  13. 13.

    A. Kanamori, “The mathematical development of set theory from Cantor to Cohen,” Bull. Symbolic Logic 1(1), 1–71 (1996).

    MathSciNet  Article  Google Scholar 

  14. 14.

    A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean Valued Analysis (Nauka Publishers, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  15. 15.

    N. N. Luzin, “Real function theory: the state of the art,” in Proceedings of the All-Russia Congress of Mathematicians (Moscow, April 27–May 4, 1927) (Glavnauka, Moscow-Leningrad, 1928), pp. 11–32.

    Google Scholar 

  16. 16.

    Yu. I. Manin, “Georg Cantor and his heritage,” Proceedings of the Steklov Institute 246, 208–216 (2004).

    MathSciNet  Google Scholar 

  17. 17.

    S. Shelah, Proper and Improper Forcing, Perspectives in Mathematical Logic (Springer-Verlag, Berlin, 1998), 2nd ed.

    MATH  Google Scholar 

  18. 18.

    G. Takeuti, Two Applications of Logic to Mathematics (Iwanami Shoten Publishers & Princeton University Press, Tokio-Princeton, 1978).

    MATH  Google Scholar 

  19. 19.

    B. H. Yandell, The Honors Class. Hilbert’s Problems and Their Solvers (A. K. Peters Ltd., Natick, MA, 2002).

    MATH  Google Scholar 

Download references

Author information



Additional information

Original Russian Text © S. S. Kutateladze, 2006, published in Siberian Electronic Mathematical Reports, 2006, Vol. 3, No. 1, pp. 384–409.

About this article

Cite this article

Kutateladze, S.S. What is Boolean valued analysis?. Sib. Adv. Math. 17, 91–111 (2007).

Download citation

Key words

  • Boolean valued model
  • ascent
  • descent
  • continuum hypothesis