Skip to main content
Log in

Dimensions of ℝ-trees and self-similar fractal spaces of nonpositive curvature

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

We study various dimensions of spaces with nonpositive curvature in the A. D. Alexandrov sense, in particular, of ℝ-trees. We find some conditions necessary and sufficient for the metric space to be an ℝ-tree and clarify relations between the topological, Hausdorff, entropy, and rough dimensions. We build the examples of ℝ-trees and CAT(0)-spaces in which strict inequalities between the topological, Hausdorff, and entropy dimensions hold; we also show that the Hausdorff and entropy dimensions can be arbitrarily large while the topological dimension remains fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Alexandroff, Introduction to Homological Dimension Theory and General Combinatorial Topology (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. P. S. Alexandroff and B. A. Pasynkov, Introduction to Dimension Theory: An Introduction to the Theory of Topological Spaces and the General Theory of Dimension (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  3. A. D. Alexandrov, Intrinsic Geometry of Convex Surfaces (OGIZ, Moscow-Leningrad, 1948) [in Russian].

    Google Scholar 

  4. V. N. Berestovskiĭ, “Pathologies in Alexandrov spaces with curvature bounded above,” Siberian Adv. Math. 12(4), 1–18 (2002).

    MathSciNet  Google Scholar 

  5. V. N. Berestovskiĭ, Homogeneous Spaces with Intrinsic Metric, D. Sc. Thesis (Sobolev Institute of Mathematics, Novosibirsk, 1990).

    Google Scholar 

  6. M. Bestvina, “ℝ-Trees in topology, geometry, and group theory,” in Handbook of Geometric Topology (North-Holland, Amsterdam, 2002), pp. 55–91.

    Google Scholar 

  7. M. R. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  8. D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, vol. 33 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2001).

    MATH  Google Scholar 

  9. S. V. Buyalo, Lectures on Spaces of Curvature Bounded Above, Parts I–III (University of Illinois, Urbana-Champaign, 1995).

    Google Scholar 

  10. G. A. Edgar and J. Golds, “A fractal dimension estimate for a graph-directed iterated function system of non-similarities,” Indiana Univ. Math. J. 48(2), 429–447 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  11. K. J. Falconer, The Geometry of Fractal Sets, vol. 85 of Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  12. J. Hawkes, “Hausdorff measure, entropy, and the independence of small sets,” Proc. London Math. Soc. (3) 28, 700–724 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Hurewicz and H. Wallman, The Dimension Theory (Inostrannaya Literatura, Moscow, 1948).

    Google Scholar 

  14. J. E. Hutchinson, “Fractals and self-similarity,” Indiana Univ. Math. J. 30(5), 713–747 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Kleiner, “The local structure of length spaces with curvature bounded above,” Math. Z. 231(3), 409–456 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. N. Kolmogorov and V. M. Tikhomirov, “ε-Entropy and ε-capacity of sets in function spaces,” Uspekhi Mat. Nauk 14(2 (86)), 3–86 (1959).

    MATH  Google Scholar 

  17. T. Lindstrøm, “Brownian motion on nested fractals,” Mem. Amer.Math. Soc. 83(420), iv+128 (1990).

    Google Scholar 

  18. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Co., San Francisco, Calif., 1982).

    MATH  Google Scholar 

  19. J. Mitchell, “On Carnot-Carathéodory metrics,” J. Differential Geom. 21(1), 35–45 (1985).

    MATH  MathSciNet  Google Scholar 

  20. P. Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. of Math. (2) 129(1), 1–60 (1989).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Yu. G. Reshetnyak on the occasion of his 75th birthday

Original Russian Text © P. D. Andreev and V. N. Berestovskiĭ, 2006, published in Matematicheskie Trudy, 2006, Vol. 9, No. 2, pp. 3–22.

About this article

Cite this article

Andreev, P.D., Berestovskiĭ, V.N. Dimensions of ℝ-trees and self-similar fractal spaces of nonpositive curvature. Sib. Adv. Math. 17, 79–90 (2007). https://doi.org/10.3103/S1055134407020010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134407020010

Key words

Navigation