Skip to main content

Boundary values of differentiable functions defined on an arbitrary domain of a Carnot group


We study the boundary values of the functions of the Sobolev function spaces W l and the Nikol’skiĭ function spaces H l which are defined on an arbitrary domain of a Carnot group. We obtain some reversible characteristics of the traces of the spaces under consideration on the boundary of the domain of definition and sufficient conditions for extension of the functions of these spaces outside the domain of definition. In some cases these sufficient conditions are necessary.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, vol. 28 of Math. Notes (Princeton University Press, Princeton, N.J., 1982).

    Google Scholar 

  2. 2.

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 (Princeton University Press, Princeton, N.J., 1970).

    MATH  Google Scholar 

  3. 3.

    S. K. Vodop’yanov, “Intrinsic geometries and spaces of differentiable functions,” in Functional Analysis and Mathematical Physics (Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1987), pp. 18–38.

    Google Scholar 

  4. 4.

    S. K. Vodop’yanov, “Isoperimetric relations and conditions for the extension of differentiable functions,” Dokl. Akad. Nauk SSSR 292(1), 11–15 (1987) [Soviet Math. Dokl. 35, 1–5 (1987)].

    MathSciNet  Google Scholar 

  5. 5.

    S. K. Vodop’yanov, “Equivalent normalizations of Sobolev and Nikol’skiĭ spaces in domains. Boundary values and extension,” in Function Spaces and Applications (Lund, 1986) (Springer, Berlin, 1988), vol. 1302 of Lecture Notes in Math., pp. 397–409.

    Chapter  Google Scholar 

  6. 6.

    S. K. Vodop’yanov, Taylor’s Formula and Function Spaces (Novosibirsk State Univ., Novosibirsk, 1988).

    MATH  Google Scholar 

  7. 7.

    S. K. Vodop’yanov, “Boundary behavior of differentiable functions and related topics,” in Nonlinear Analysis, Function Spaces and Applications (Roudnice nad Labem, 1990) (Teubner, Leipzig, 1990), vol. 4 of Teubner-Texte Math., Bd 119, pp. 224–253.

    Google Scholar 

  8. 8.

    S. K. Vodop’yanov and A. V. Greshnov, “On the continuation of functions of bounded mean oscillation on spaces of homogeneous type with intrinsic metric,” Sibirsk. Mat. Zh. 36(5), 1015–1048 (1995) [Siberian Math. J. 36 (5), 873–902 (1995)].

    MathSciNet  Google Scholar 

  9. 9.

    S. K. Vodop’yanov and I. M. Pupyshev, “Whitney-Type theorems of extension of functions on Carnot groups,” Sibirsk. Mat. Zh. 47(4), 731–752 (2006) [Siberian Math. J. 47 (4), 601–620 (2006)].

    MathSciNet  Google Scholar 

  10. 10.

    H. Whitney, “Analytic extensions of differentiable functions defined in closed sets,” Trans. Amer. Math. Soc. 36(1), 63–89 (1934).

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Additional information

Dedicated to Yu. G. Reshetnyak on the occasion of his 7th birthday

Original Russian Text © S. K. Vodop’yanov and I. M. Pupyshev, 2006, published in Matematicheskie Trudy, 2006, Vol. 9, No. 2, pp. 23–46.

About this article

Cite this article

Vodop’yanov, S.K., Pupyshev, I.M. Boundary values of differentiable functions defined on an arbitrary domain of a Carnot group. Sib. Adv. Math. 17, 62–78 (2007).

Download citation

Key words

  • Sobolev space
  • Nikol’skiĭ space
  • Carnot group
  • trace
  • boundary values
  • Whitney’s Theorem
  • extension of functions