Skip to main content
Log in

Studying Helical Rod Oscillations Exposed to Vortex Flow

  • MECHANICS OF MACHINES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The modes of small oscillations are studied in a rod having an axis in the shape of a three-turn cylindrical helix using the expansion into oscillating eigenmodes and the method of vortex elements. Oscillationós are excited by pressure pulsations generated as a result of the processes of intense vortex formation when a spatial incompressible flow flows around the rod. The polyharmonic nature of unsteady loading and the response of the oscillatory system are demonstrated, as is the potential shown to develop intrinsic resonances in these systems. The results and modeling technique can be used to assess the durability of spiral tube bundles in heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhukauskas, A., Ulinskas, R., and Katinas, V., Gidrodinamika i vibratsii obtekaemykh puchkov trub (Hydrodynamics and Vibrations of Streamlined Tube Bundles), Vilnus: Mokslas, 1984.

  2. Svetlitskii, V.A., Mekhanika truboprovodov i shlangov (Mechanics of Pipelines and Hoses), Moscow: Mash, 1982.

  3. Devnin, S.I., Gidrouprugost’ konstruktsii pri otryvnom obtekanii (Hydroelasticity of Structures with detached flow), Leningrad: Sudostroenie, 1975.

  4. Blevins, R.D., Flow-Induced Vibration, Malabar, FL: Krieger Publ., 1990, 2nd ed., p. 254.

    MATH  Google Scholar 

  5. Robinson, R.W. and Hamilton, J., A Criterion for Assessing Wind Induced Crossflow Vortex Vibrations in Wind Sensitive Structures. Health and Safety Executive Offshore Technology Report OTH 92 379, London: Brown & Root Limited, 1992.

    Google Scholar 

  6. Kven Umadhav, Sudhanshu Kumar, and Chandrashekar Goud, V., Performance analysis of different heat exchanger design using CFD simulation, Int. J. Res. Adv. Eng. Technol., 2017, vol. 6, no. 2, p. 158.

    Google Scholar 

  7. Ke Yan, Pei-qi Ge, and Jun Hong, Experimental study of shell side flow-induced vibration of conical spiral tube bundle, J. Hydrodyn., 2013, vol. 25, no. 5, p. 695.

    Article  Google Scholar 

  8. Heqin Xu, Mallet, M., and Liszkai, T., Turbulent buffeting of helical coil steam generator tubes, Proc. ASME 2014 Pressure Vessels and Piping Conference, vol. 4: Fluid-Structure Interaction, Anaheim, CA, 2014.

  9. Chen, S.S., Jendrzejczyk, J.A., and Wambsganss, M.W., Tube vibration in a half-scale sector model of a helical tube steam generator, J. Sound Vib., 1983, vol. 91, no. 4, p. 539.

    Article  Google Scholar 

  10. Marcum, W.R. and Harmon, P.L., Characterizing fluid-structure interactions of a helical coil in cross flow, J. Fluids Struct., 2016, vol. 65, p. 355.

    Article  Google Scholar 

  11. Merzari, E., Yuan, H., Kraus, A., Obabko, A., Fischer, P., Solberg, J., Lee, S., Lai, J., Delgado, M., and Hassan, Y., High-fidelity simulation of flow-induced vibrations in helical steam generators for small modular reactors, Nucl. Technol., 2019, vol. 205, nos. 1–2, p. 33.

    Article  Google Scholar 

  12. Vasil’ev, S.V. and Kuz’minov, Yu.V., Steam Generator RU BREST-OD-300. Project Direction “PRORYV:” Results of Implementing a New Technological Platform for Nuclear Energy, April 3–4, 2015. http://www.innov-rosatom.ru/files/articles/634886229ac31981e4a37a00790a2e9b.pdf.

  13. Kaplunov, S.M., Val’es, N.G., Samolysov, A.V., and Marchevskaya, O.A., Determining the tube bundle streamlining critical parameters using the numerical experiment method, Therm. Eng., 2015, no. 8, p. 57.

  14. Samolysov, A.V., Improvement of vibration strength of tube bundles of heat exchangers under hydroelastic excitation of vibrations, Cand. Sci. (Eng.) Dissertation, Moscow, 2016.

  15. Shcheglov, G.A., Application of vortons to calculate vibrations of a beam in spatial flow, J. Mach. Manuf. Reliab., 2009, vol. 38, pp. 319–323.

    Article  Google Scholar 

  16. Ermakov, A.V. and Shcheglov, G.A., Simulation of the dynamics of a cylindrical shell in a spatial fluid flow by the vortex element method, Izv. Vyssh. Uchebn. Zaved. Mashinostr., 2014, no. 3, p. 35.

  17. Dynnikova, G.Ya., The integral formula for pressure field in the nonstationary barotropic flows of viscous fluid, J. Math. Fluid Mech., 2014, vol. 16, no. 1, p. 145.

    Article  MathSciNet  Google Scholar 

  18. Cottet, G.-H. and Koumoutsakos, P., Vortex Methods: Theory and Practice, Cambridge: Cambridge Univ. Press, 2000.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and University Education of Russia, project no. 0705-2020-0047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shcheglov.

Additional information

Translated by V. Vetrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcheglov, G.A. Studying Helical Rod Oscillations Exposed to Vortex Flow. J. Mach. Manuf. Reliab. 50, 112–117 (2021). https://doi.org/10.3103/S1052618821020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618821020138

Keywords:

Navigation