Skip to main content
Log in

Reduction of Shear Stresses in Friction Units with an Electrical Insulation Coating of the ITER Blanket Modules

  • RELIABILITY, STRENGTH, AND WEAR RESISTANCE OF MACHINES AND STRUCTURES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

During operation of the International Thermonuclear Experimental Reactor (ITER), its removable blanket modules undergo significant shock loads in the process of plasma disruption, which lead to the displacement of parts with a gas-thermal insulating coating on the mount points of the protective panels of the vacuum chamber. A high friction coefficient \(f~\) ≥ 0.28 at maximum shear resistance provokes peeling, fracturing, and chipping of insulating coatings. Methods of reducing the friction coefficient of supporting surfaces coated with an electrical insulation coating (Al2O3, MgAl2O4) and mount points of the ITER blanket modules experiencing significant shear stresses are considered. The tribotechnical tests of electrical insulating coatings paired with the proposed modified zirconium alloy plates with an antifriction layer in the range of sliding speeds \({v}\) = 10–5−10–2 m/s, loads \(N\) = 100−600 N according to the pin-on-disk scheme at temperatures \(T\) = 20°C, T = 250°C showed a change in the friction coefficient in the range \(f\) = 0.08−0.23 and high wear resistance of ceramic coatings. The use of innovative intermediate plates with a modified layer (ZrO2−C) in blanket modules could be an alternative to low pressure plasma spraying of an antifriction MoS2 finish layer on electrical insulation coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. IO ITER, Insulating coatings for the blanket system components, ITER_D_25QF6 v. 1.4, 2013.

  2. IO ITER, ITER Vacuum Vessel Load Specification, ITER_D_2F52JY v. 3.3, 2013.

  3. Danilov, I.V., Leshukov, A.Yu., Razmerov, A.V., Sviridenko, M.N., Strebkov, Yu.S., Mazul’, I.V., Ger-vash, A.A., and Labusov, A.N., The supporting structure of the first wall of the ITER blanket module, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, 2013, vol. 36, no. 1, p. 17.

    Google Scholar 

  4. Dragunov, Yu.G., Leshukov, A.Yu., Strebkov, Yu.S., Kirillov, S.Yu., Makarov, S.V., Trofimovich, P.D., et al., Design development, manufacture and experimental justification of the health of the components of the ITER blanket system, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, 2016, vol. 39, no. 4, p. 13.

    Google Scholar 

  5. Poddubnyi, I., Kolganov, V., Elkin, V., Khomiakov, S., Danilov, I., Strebkov, Yu., et al., Analysis and experimental justification of electrical connector for ITER blanket module, Fusion Eng. Des., 2017, vol. 124, p. 516.

    Article  Google Scholar 

  6. Khomiakov, S., Poddubnyi, I., Kolganov, V., Zhmakin, A., Parshutin, E., Danilov, I., et al., ITER blanket module connectors. Design, analysis and testing for procurement arrangement, Fusion Eng. Des., 2016, vols. 109–111, Part C, p. 261.

    Article  Google Scholar 

  7. Suvorova, A.A., Danilov, I.V., Kalinin, G.M., and Korostelev, A.B., Heat treatment effects on the microstructure and properties of Cu–Cr–Zr alloy used for the ITER blanket components, Nucl. Mater. Energy, 2018, vol. 15, p. 80.

    Article  Google Scholar 

  8. Zaitsev, A.N., Strebkov, Yu.S., Leshukov, A.Yu., Ivanov, V.M., Kuksenova, L.I., Sachek, B.Ya., Mezrin, A.M., and Aleksandrova, Yu.P., Assessment of critical level of shear stresses in tribocouples of Al2O3 and metal details of ITER blanket modules, J. Mach. Manuf. Reliab., 2016, vol. 45, no. 6, p. 522.

    Article  Google Scholar 

  9. Baldaev, L.Kh., Renovatsiya i uprochnenie detalei mashin metodami gazotermicheskogo napyleniya (Renovation and Hardening of Machine Parts Using Thermal Spraying Methods), Moscow: KKhT, 2004.

  10. ASTM G99 Standart Test Method for Wear Testing with Pin-on-Disk Apparatus, West Conshohocken, PA: ASTM Int., 1999.

  11. Materialy dlya uzlov sukhogo treniya, rabotayushchikh v vakuum: Spravochnik (Materials for Dry Friction Units Working in a Vacuum, The Handbook), Tseev, N.A., Kozelkin, V.V., and Gurov, A.A., Eds., Moscow: Mashinostroenie, 1991.

    Google Scholar 

  12. Isaev, V.G. and Kostylev, A.G., Dusting in dynamic vacuum—the further way of improvement of quality of coverings, Inform.-Tekhnol. Vestn., 2016, no. 3 (09), p. 114.

  13. Young, E.J., Mateeva, E., Moore, J.J., Mishra, B., and Loch, M., Low pressure plasma spray coatings, Thin Solid Films, 2000, vol. 377, p. 788.

    Article  Google Scholar 

  14. Ouyang, J.H. and Sasaki, S., Tribological characteristics of low-pressure plasma-sprayed Al2O3 coating from room temperature to 800°C, Tribol. Int., 2005, vol. 38, p. 49.

    Article  Google Scholar 

  15. Zaitsev, A.N., Aleksandrova, Yu.P., and Yagopol’skii, A.G., A comparative analysis of physical and mechanical properties of gas-thermal radiation-resistant electrical insulating coatings depending on the application method, Izv. Vyssh. Uchebn. Zaved., Ser. Mashinostr., 2018, no. 6, p. 12.

  16. Gazotermicheskie pokrytiya iz poroshkovykh materialov: Spravochnik (Thermal Coatings of Powder Materials: A Guide), Borisov, Yu.S., Kharlamov, Yu.A., Sidorenko, S.L., and Ardatovskaya, E.N., Eds., Kiev: Naukova Dumka, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zaitsev.

Ethics declarations

The authors declare they have no conflict of interest.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, A.N., Aleksandrova, Y.P. Reduction of Shear Stresses in Friction Units with an Electrical Insulation Coating of the ITER Blanket Modules. J. Mach. Manuf. Reliab. 49, 763–769 (2020). https://doi.org/10.3103/S1052618820090137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618820090137

Keywords:

Navigation