Skip to main content
Log in

Liquid Heating During the Collapse of a Single Cavitation Bubble

  • MECHANICS OF MACHINES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

This paper presents the results of a numerical study of the liquid heating process during collapse of a single spherical cavitation bubble in water at a liquid pressure of 10 bar, temperature of 20°C, and an initial bubble radius of 500 μm. The simulation of this phenomenon took into account the thermal conductivity of the vapor in the bubble and the surrounding liquid, heat transfer and evaporation/condensation on the surface of the bubble, and the effects of viscosity and compressibility of the liquid. It is shown that, as a result of bubble collapse, the liquid heats up in a region of about 60 μm radius. The temperature in the center of this region is about 50°C higher than in the surrounding liquid. The thermal energy expended on heating the liquid in this region is approximately equal to 25 μJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Philipp, A. and Lauterborn, W., Cavitation erosion by single laser-produced bubbles, J. Fluid Mech., 1998, vol. 361, pp. 75–116.

    Article  Google Scholar 

  2. Pearsall, I.S., Cavitation, London: Mills and Boon, 1972.

    Google Scholar 

  3. Brennen, C.E., Hydrodynamics of Pumps, Oxford: Oxford Univ. Press, 1994.

    MATH  Google Scholar 

  4. Harrison, M., An experimental study of single bubble cavitation noise, J. Acoust. Soc. Am., 1982, vol. 24, no. 6, p. 776.

    Article  Google Scholar 

  5. Kieser, B., Phillion, R., Smith, S., and McCartney, T., The application of industrial scale ultrasonic cleaning to heat exchangers, in Proceedings of International Conference on Heat Exchanger Fouling and Cleaning,2011, p. 336.

  6. Guoa, Sh., Khoo, B.Ch., Teob, S.L.M., and Lee, H.P., The effect of cavitation bubbles on the removal of juvenile barnacles, Colloids Surf., B, 2013, vol. 109, p. 219.

    Article  Google Scholar 

  7. Ohl, C.-D., Arora, M., Ikink, R., Jong, N., Versluis, M., Delius, M., and Lohse, D., Sonoporation from jetting cavitation bubbles, Biophys. J., 2006, vol. 91, p. 4285.

    Article  Google Scholar 

  8. Ganiev R.F., Korneev A.S., and Ukrainskii L.E., On the effect of wave dispersion of a gas in a liquid, Dokl. Akad. Nauk, 2007, vol. 416, no. 3, p. 329.

    Google Scholar 

  9. Ganiev R.F. and Ukrainskii L.E., Nelineinaya volnovaya mekhanika i tekhnologii. Volnovye i kolebatel’nye yavleniya v osnove vysokikh tekhnologii (Nonlinear Wave Mechanics and Technology. Wave and Vibrational Phenomena at the Basis of High Technology), 2nd ed., Moscow: Inst. Komp. Issled. Regulyar. Khaotich. Dinamika, 2011, p. 780.

  10. Britvin, L.N., Cavitation-vortex type heat generator, RF Patent Request No. 99110397/06, 2001.

  11. Biryuk, V.V., Serebryakov, R.A., and Dostovalova, S.S., Vortex hydraulic heat generator with improved characteristics, Izv. Samar. Sel’skokhoz. Akad., 2015, no. 3, p. 70.

  12. Yang, Y.X., Wang, Q.X., and Keat, T.S., Dynamic feature of a laser-induced cavitation bubble near a solid boundary, Ultrason. Sonochem., 2013, vol. 20, p. 1098.

    Article  Google Scholar 

  13. Taleyarkhan, R.P., West, C.D., Cho, J.S., Lahey, R.T., Jr., Nigmatulin, R.I., and Block, R.C., Evidence for nuclear emissions during acoustic cavitation, Science (Washington, DC, U. S.), 2002, vol. 295, p. 1868.

    Article  Google Scholar 

  14. Nigmatulin, R.I., Akhatov, I.Sh., Topolnikov, A.S., Bolotnova, R.Kh., Vakhitova, N.K., Lahey, R.T., Jr., and Taleyarkhan, R.P., The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion, Phys. Fluid, 2005, vol. 17, p. 107106.

    Article  Google Scholar 

  15. Prosperetti A., Lezzi A., Bubble dynamics in a compressible liquid. Part 1. First-order theory, J. Fluid Mech., 1986, vol. 168, p. 457.

    Article  Google Scholar 

  16. Aganin, A.A. and Toporkov, D.Yu., Liquid viscosity effect in dynamics of a nonspherical bubble, in Proceedings of the International Summer Scientific School on High Speed Hydrodynamics 2004, Cheboksary, Russia,2004, p. 197.

  17. Hairer, E., Nørsett, S.P., and Wanner, G, Solving Ordinary Differential Equations I. Nonstiff Problems, Berlin, Heidelberg: Springer, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Davletshin.

Ethics declarations

Authors declare no conflict of interest.

Additional information

Translated by L. Trubitsyna

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aganin, A.A., Ganiev, O.R., Davletshin, A.I. et al. Liquid Heating During the Collapse of a Single Cavitation Bubble. J. Mach. Manuf. Reliab. 49, 24–30 (2020). https://doi.org/10.3103/S1052618820010021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618820010021

Keywords:

Navigation