Two-Dimensional Plastic Flow of a Flange when Deep Drawing a Thin-Walled Polygonal Prism

Abstract

Two-dimensional plastic flow of a flange when deep drawing a thin-walled polygonal prism with a flat bottom of round blank provided with Mises yield criterion based on the theory of plane stress condition according to Sokolovskii is simulated. The slip lines, the stress condition, the hodograph of displacement velocities, and the dissipative function of plastic flow are calculated. The limit parameters of deep drawing are defined by the maximum tensile stress at the mold contour and by zones with negative dissipative function, which depends on the radius of rounding of mold angles and the prism height.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Romanovskii, V.P., Spravochnik po kholodnoi shtampovke (Cold Stamping Guide), Leningrad: Mashinostroenie, 1979.

    Google Scholar 

  2. 2.

    Averkiev, Yu.A. and Averkiev, A.Yu., Tekhnologiya kholodnoi shtampovki (Cold Stamping Technology), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  3. 3.

    Popov, E.A., Kovalev, V.G., and Shubin, I.N., Tekhnologiya i avtomatizatsiya listovoi shtampovki (Technology and Automation of Sheet Metal Stamping), Moscow: MGTU im. N.E. Baumana, 2003.

  4. 4.

    Hill, R., The Mathematical Theory of Plasticity, Oxford Classic Texts in the Physical Sciences, USA: Oxford Univ. Press, 1998.

    Google Scholar 

  5. 5.

    Johnson, W. and Mellor, P., Engineering Plasticity, UK: Van Nostrand Reinhold, Ellis Horwood, 1983.

    Google Scholar 

  6. 6.

    Nepershin, R.I., Applied Problems of Plasticity, Moscow: MSTU STANKIN, 2016.

    Google Scholar 

  7. 7.

    Nepershin, R.I., Thin-walled conical shell drawing from a plane blank, Mech. Solids, 2010, vol. 45, no. 1, pp. 111–122.

    Article  Google Scholar 

  8. 8.

    Nepershin, R.I., Formation of a flange from a flat blank with a hole, J. Mach. Manuf. Reliab., 2011, vol. 40, no. 2, pp. 140–148.

    Article  Google Scholar 

  9. 9.

    Nepershin, R.I., Deep drawing of a thin-walled hemisphere, J. Mach. Manuf. Reliab., 2014, vol. 43, no. 1, pp. 60–68.

    Article  Google Scholar 

  10. 10.

    Nepershin, R.I. and Prusakov, M.A., Half-spherical shell deep drawing, AIP Conf. Proc., 2017, vol. 1863, p. 210002. https://doi.org/10.1063/L4992380

    Article  Google Scholar 

  11. 11.

    Nepershin, R.I., Thin-walled pipe expansion by a punch with a curvilinear profile, J. Mach. Manuf. Reliab., 2010, vol. 39, no. 1, pp. 66–72.

    Article  Google Scholar 

  12. 12.

    Nepershin, R.I., Thin-walled tube extension by rigid curved punch, Engineering, 2011, vol. 3, no. 5, pp. 452–460.

    Article  Google Scholar 

  13. 13.

    Sokolovskii, V.V., Plastic equation equations for planar stress state, Prikl. Mat. Mekh., 1945, vol. 9, no. 1.

  14. 14.

    Sokolovskii, V.V., Teoriya plastichnosti (Plasticity Theory), Moscow: Vysshaya Shkola, 1969.

    Google Scholar 

  15. 15.

    Sokolovskii, V.V., Plane plasticity theory problem on the distribution of stresses around holes, Prikl. Mat. Mekh., 1949, vol. 13, no. 2.

  16. 16.

    Sokolovskii, V.V., Expansion of a circular hole in a rigid plastic plate, Prikl. Mat. Mekh., 1961, vol. 25, no. 3.

  17. 17.

    Nepershin, R.I., Plastic tension of thin strip with symmetrical cut-outs, AIP Conf. Proc., 2016, vol. 1738, p. 170003. https://doi.org/10.1063/L4951947

    Article  Google Scholar 

  18. 18.

    Ishlinskii, A.Yu. and Ivlev, D.D., Matematicheskaya teoriya plastichnosti (Mathematical Theory of Plasticity), Moscow: Fizmatlit, 2001.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. I. Nepershin.

Additional information

Russian Text © The Author(s), 2019, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2019, No. 3, pp. 36–47.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nepershin, R.I. Two-Dimensional Plastic Flow of a Flange when Deep Drawing a Thin-Walled Polygonal Prism. J. Mach. Manuf. Reliab. 48, 219–228 (2019). https://doi.org/10.3103/S1052618819030117

Download citation

Keywords

  • thin-walled polygonal prism
  • deep drawing
  • flange
  • plain stress condition
  • ideal plasticity
  • slip lines hodograph of velocities
  • dissipative function