Journal of Machinery Manufacture and Reliability

, Volume 47, Issue 6, pp 543–549 | Cite as

Application of Wave Effects for Obtaining Composite Materials Based on Starch and Polyvinyl Alcohol

  • S. R. Ganiev
  • V. P. Kasilov
  • N. E. Kochkina
  • O. A. SkobelevaEmail author
New Technologies in Mechanical Engineering


An alternative method for obtaining liquid-phase composite materials based on starch and polyvinyl alcohol is proposed with exerting wave resonance effects on a mixture of polymeric solutions. It has been established that the use of wave treatment makes it possible to obtain a twofold increase in the stability of starch/polyvinyl alcohol composites in time as compared to samples obtained using a traditional blade agitator. By using IR spectrophotometry, it is shown that an increase in the amount of intermolecular hydrogen bonds occurs in the starch/polyvinyl alcohol system as a result of wave processing. The use of wave technology provides a higher surface homogeneity of film materials formed from liquid-phase starch/polyvinyl alcohol composites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Averous, L. and Halley, P., Starch polymers: from the field to industrial products, in Starch Polymers, Amsterdam: Elsevier, 2014, Chap. 1, pp. 3–10.CrossRefGoogle Scholar
  2. 2.
    Misra, M., Pandey, J.K., and Mohanty, A.K., Biocomposites: Design and Mechanical Performance, Vol. 61 of Woodhead Publ. Ser. in Composites Sci. Eng., Cambridge: Woodhead, 2015.Google Scholar
  3. 3.
    Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., and Wypych, F., Starch films reinforced with mineral clay, Carbohydr. Polym., 2003, vol. 52, no. 2, pp. 101–110.CrossRefGoogle Scholar
  4. 4.
    Mathew, A.P. and Dufresne, A., Plasticized waxy maize starch: effect of polyols and relative humidity on material properties, Biomacromolecules, 2002, no. 3, pp. 1101–1108.CrossRefGoogle Scholar
  5. 5.
    Lu, D.R., Xiao, C.M., and Xu, S.J., Starch-based completely biodegradable polymer materials, Polym. Lett., 2009, vol. 3, no. 6, pp. 366–375.CrossRefGoogle Scholar
  6. 6.
    Suvorova, A.I., Tyukova, I.S., and Trufanova, E.I., Biodegradable starch-based polymeric materials, Russ. Chem. Rev., 2000, vol. 69, no. 5, pp. 451–459.CrossRefGoogle Scholar
  7. 7.
    Yoon, S.D., Chough, S.H., and Park, H.R., Effects of additives with different functional groups on the physical properties of starch/PVA blend film, J. Appl. Polym. Sci., 2006, vol. 100, no. 5, pp. 3733–3740.CrossRefGoogle Scholar
  8. 8.
    Mao, L., Imam, S., Gordon, S., Cinelli, P., and Chiellini, E., Extruded cornstarch-glycerol-poly(vinyl alcohol) blends: mechanical properties, morphology, and biodegradability, J. Polym. Environ., 2000, no. 8, pp. 205–211.CrossRefGoogle Scholar
  9. 9.
    Willet, J.L. and Finkenstand, V.L., Preparation of strach-graft-polyacrylamide copolymers by reactive extrusion, Polym. Eng. Sci., 2003, vol. 43, no. 10, pp. 1666–1674.CrossRefGoogle Scholar
  10. 10.
    Priya, B., Gupta, V.K., Pathaniab, D., and Singha, A.S., Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fibre, Carbohydr. Polym., 2014, vol. 109, pp. 171–179.CrossRefGoogle Scholar
  11. 11.
    Lani, N.S. and Ngadi, N., Preparation and characterization of polyvinyl alcohol/starch blend film composite, Appl. Mech. Mater., 2014, vol. 554, pp. 86–90.CrossRefGoogle Scholar
  12. 12.
    Kolesnikov, A.A., Li, R.I., and Kuznetsov, M.M., Identification of the optimum conditions and modes ultrasonic influence for dispersion solutions of polymeric composite materials, Nauka Tsentr. Ross., 2013, no. 4, pp. 18–21.Google Scholar
  13. 13.
    Aldoshin, S.M., Badamshina, E.R., Grishchuk, A.A., Tarasov, A.E., Estrin, Ya.I., Ganiev, R.F., Ganiev, S.R., Kasilov, V.P., Kurmenev, D.V., and Pustovgar, A.P., Study of the influence of single-wall carbon nanotube dispersion techniques upon the properties of epoxy resin-based nanocomposites, J. Mach. Manuf. Reliab., 2015, vol. 44, no. 3, pp. 271–275.CrossRefGoogle Scholar
  14. 14.
    Ganiev, R.F., Ganiev, S.R., Kasilov, V.P., Kislogubova, O.N., Kurmenev, D.V., Pustovgar, A.P., Aldoshin, S.M., Badamshina, E.R., Grishchuk, A.A., Tarasova, A.E., and Estrin, Ya.I., Prospects for wave technologies for creating polymer composite materials (nanocomposites, highly directional composites), Inzh. Zh. Pril., 2015, no. 14, pp. 3–9.Google Scholar
  15. 15.
    Kasilov, V.P., Kislogubova, O.N., and Kurmenev, D.V., Study of the rheological properties of multicomponent dispersed systems with a liquid dispersion medium, obtained by wave technology, Khim. Prom-st’ Segodnya, 2016, no. 6, pp. 45–56.Google Scholar
  16. 16.
    Ganiev, R.F., Kasilov, V.P., Kislogubova, O.N., Pustovgar, A.P., and Kurmenev, D.V., Obtaining fine emulsions of a controlled level of dispersion by wave methods, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 2, pp. 141–145.CrossRefGoogle Scholar
  17. 17.
    Ganiev, R.F., Fomin, V.N., Kislogubova, O.N., Golikova, O.A., Naumova, S.V., and Malyukova, E.B., The use of wave technologies to obtain composite sorption-active materials, Khim. Prom-st’ Segodnya, 2015, no. 3, pp. 19–24.Google Scholar
  18. 18.
    Ganiev, R.F., Fomin, V.N., Belyaev, Yu.A., Malyukova, E.B., Chukaev, A.G., Vedenin, A.D., and Berlin, A.A., Stability of disperse systems, Dokl. Chem., 2009, vol. 427, no. 1, pp. 179–182.CrossRefGoogle Scholar
  19. 19.
    Ganiev, R.F., Ganiev, S.R., Kasilov, V.P., and Pustovgar, A.P., Volnovye tekhnologii v innovatsionnom mashinostroenii (Wave Technologies in Innovative Engineering), Moscow: Regulyar. Khaotich. Dinamika, 2014.Google Scholar
  20. 20.
    Ganiev, R.F., Ganiev, S.R., Kasilov, V.P., and Pustovgar, A.P., Wave Technology in Mechanical Engineering: Industrial Applications of Wave and Oscillation Phenomena, New York: Wiley, 2015.CrossRefGoogle Scholar
  21. 21.
    Bikales, N.M. and Segal, L., Cellulose and Cellulose Derivatives, New York: Wiley, 1971, vol. 1.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. R. Ganiev
    • 1
  • V. P. Kasilov
    • 1
  • N. E. Kochkina
    • 2
    • 1
  • O. A. Skobeleva
    • 1
    Email author
  1. 1.Blagonravov Institute of Mechanical EngineeringRussian Academy of SciencesMoscowRussia
  2. 2.G.A. Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations