Skip to main content
Log in

Modeling and Investigation of the Stability of a Multicutter Turning Process by a Trace

  • Mechanics of Machines
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The results of modeling and investigation of the stability of a continuous multicutter turning process are presented. The mathematical modeling is based on an equation for the formation of new surfaces, on equations of motion, and on the fractional-rational cutting law. The influence of the parameters of the technological system on the stability of the continuous cutting mode is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalidasan, R., Yatin, M., Sarma, D.K., Senthilvelan, S., and Dixit, U.S., An experimental study of cutting forces and temperature in multi–tool turning of grey cast iron, Int. J. Mach. Machinabil. Mater., 2016, vol. 18, nos. 5–6, pp. 540–551.

    Google Scholar 

  2. Reith, M.J., Bachrathy, D., and Stepan, G., Improving the stability of multi–cutter turning with detuned dynamics, Mach. Sci. Technol., 2016, vol. 20, no. 3, pp. 440–459.

    Article  Google Scholar 

  3. Azvar, M. and Budak, E., Multi–dimensional modelling of chatter stability in parallel turning operation, in Proceedings of the 17th International Conference on Machine Design and Production, July 12–15, 2016, Bursa, Turkey.

    Google Scholar 

  4. Guskov, A., Voronov, S.A., Paris, H., and Batzer, S.A., Cylindrical Workpiece Turning Using Multiple–Cutting Tool, in Proceedings of the Design Technical Conferences and Computers and Information Engineering Conference, Pittsburgh, Pennsylvania, Sept. 9–12, 2001.

    Google Scholar 

  5. Kozochkin, M.P., Dinamika Protsessa rezaniya. Teoriya, eksperiment, analiz (Dynamics of Cutting Process. Theory, Experiment, Analysis), Saarbrücken, Lambert Academic, 2013.

    Google Scholar 

  6. Kudinov, V.A., Dinamika stankov (Dynamics of Machine Tools), Moscow: Mashinostroenie, 1967.

    Google Scholar 

  7. Dombovari, Z., Barton, D.A.W., Wilson, R.E., and Stepan, G., On the global dynamics of chatter in the orthogonal cutting model, Int. J. Non–lin. Mech., 2011, no. 46, pp. 330–338.

    Article  Google Scholar 

  8. El’yasberg, M.E., Avtokolebaniya metallorezhushchikh stankov (Self–Oscillations in Metal–Cutting Machines), St. Petersburg: OKBS, 1993.

    Google Scholar 

  9. Brissaud, D., Gouskov, A., Guibert, N., and Rech, J., Influence of the ploughing effect on the dynamic behavior of the self–vibratory drilling head, CIRP Ann.–Manuf. Technol., 2008, vol. 57, pp. 383–388.

    Google Scholar 

  10. Gouskov, A., Gouskov, M., Lorong, Ph., and Panovko, G., Influence of the clearance face on the condition of chatter self–excitation during turning, Int. J. Mach. Machinabil. Mater., 2017, vol. 19, no. 1, pp. 17–39.

    Google Scholar 

  11. Gerasimenko, A., Guskov, M., Gouskov, A., Lorong, P., and Panovko, G., Analytical approach of turning thinwalled tubular parts. Stability analysis of regenerative chatter, Vibroeng. Proc., 2016, vol. 8, pp. 179–184.

    Google Scholar 

  12. Wang, X. and Feng, C.X., Development of empirical models for surface roughness prediction in finish turning, Int. J. Adv. Manuf. Technol., 2002, vol. 20, no. 5, pp. 348–356.

    Article  Google Scholar 

  13. Benardos, P.G., Mosialos, S., and Vosniakos, G.C., Prediction of workpiece elastic deflections under cutting forces in turning, Robot. Comput.–Integr. Manuf., 2002, vol. 22, pp. 505–514.

    Article  Google Scholar 

  14. Astashev, V.K. and Korendyasev, G.K., Thermomechanical model of the occurrence of oscillations in metal cutting, J. Mach. Manuf. Reliab., 2012, vol. 41, no. 3, pp. 189–193.

    Article  Google Scholar 

  15. Kondratenko, K., Gouskov, A., Guskov, M., Lorong, Ph., and Panovko, G., Analysis of indirect measurement of cutting forces turning metal cylindrical shells, Vibrat. Eng. Technol. Mach., 2014, pp. 929–937.

    Google Scholar 

  16. Guskov, A.M., Voronov, S.A., Paris, H., and Batzer, S.A., Nonlinear dynamics of a machining system with two interdependent delays, Commun. Nonlin. Sci. Numer. Simul., 2002, vol. 7, no. 3, pp. 207–221.

    Article  MATH  Google Scholar 

  17. Lamikiz, A., Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining, Mach. Sci. Technol., 2005, vol. 9, no. 3, pp. 411–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gouskov.

Additional information

Original Russian Text © A.M. Gouskov, M.A. Guskov, Dinh Dyk Tung, G.Ya. Panovko, 2018, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, No. 4.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouskov, A.M., Guskov, M.A., Tung, D.D. et al. Modeling and Investigation of the Stability of a Multicutter Turning Process by a Trace. J. Mach. Manuf. Reliab. 47, 317–323 (2018). https://doi.org/10.3103/S1052618818040052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618818040052

Navigation